Marsilea

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 270 Experts worldwide ranked by ideXlab platform

Isabelle Olivieri - One of the best experts on this subject based on the ideXlab platform.

Renaud Vitalis - One of the best experts on this subject based on the ideXlab platform.

Miquel Riba - One of the best experts on this subject based on the ideXlab platform.

Bruno Colas - One of the best experts on this subject based on the ideXlab platform.

Stephen M. Wolniak - One of the best experts on this subject based on the ideXlab platform.

  • Kinesin-2 and kinesin-9 have atypical functions during ciliogenesis in the male gametophyte of Marsilea vestita
    BMC Cell Biology, 2016
    Co-Authors: Erika J. Tomei, Stephen M. Wolniak
    Abstract:

    Background Spermatogenesis in the semi-aquatic fern, Marsilea vestita , is a rapid, synchronous process that is initiated when dry microspores are placed in water. Development is post-transcriptionally driven and can be divided into two phases. The first phase consists of nine mitotic division cycles that produce 7 sterile cells and 32 spermatids. During the second phase, each spermatid differentiates into a corkscrew-shaped motile spermatozoid with ~140 cilia. Results Analysis of the transcriptome from the male gametophyte of Marsilea revealed that one kinesin-2 (MvKinesin-2) and two kinesin-9 s (MvKinesin-9A and MvKinesin-9B) are present during spermatid differentiation and ciliogenesis. RNAi knockdowns show that MvKinesin-2 is required for mitosis and cytokinesis in spermatogenous cells. Without MvKinesin-2, most spermatozoids contain two or more coiled microtubule ribbons with attached cilia and very large cell bodies. MvKinesin-9A is required for the correct placement of basal bodies along the organelle coil. Knockdowns of MvKinesin-9A have basal bodies and cilia that are irregularly positioned. Spermatozoid swimming behavior in MvKinesin-2 and -9A knockdowns is altered because of defects in axonemal placement or ciliogenesis. MvKinesin-2 knockdowns only quiver in place while MvKinesin-9A knockdowns swim erratically compared to controls. In contrast, spermatozoids produced after the silencing of MvKinesin-9B exhibit normal morphology and swimming behavior, though development is slower than normal for these gametes. Conclusions Our results show that MvKinesin-2 and MvKinesin-9A are required for ciliogenesis and motility in the Marsilea male gametophyte; however, these kinesins display atypical roles during these processes. MvKinesin-2 is required for cytokinesis, a role not typically associated with this protein, as well as for ciliogenesis during rapid development and MvKinesin-9A is needed for the correct orientation of basal bodies. Our results are the first to investigate the kinesin-linked mechanisms that regulate ciliogenesis in a land plant.

  • kinesin 2 and kinesin 9 have atypical functions during ciliogenesis in the male gametophyte of Marsilea vestita
    BMC Cell Biology, 2016
    Co-Authors: Erika J. Tomei, Stephen M. Wolniak
    Abstract:

    Spermatogenesis in the semi-aquatic fern, Marsilea vestita, is a rapid, synchronous process that is initiated when dry microspores are placed in water. Development is post-transcriptionally driven and can be divided into two phases. The first phase consists of nine mitotic division cycles that produce 7 sterile cells and 32 spermatids. During the second phase, each spermatid differentiates into a corkscrew-shaped motile spermatozoid with ~140 cilia. Analysis of the transcriptome from the male gametophyte of Marsilea revealed that one kinesin-2 (MvKinesin-2) and two kinesin-9 s (MvKinesin-9A and MvKinesin-9B) are present during spermatid differentiation and ciliogenesis. RNAi knockdowns show that MvKinesin-2 is required for mitosis and cytokinesis in spermatogenous cells. Without MvKinesin-2, most spermatozoids contain two or more coiled microtubule ribbons with attached cilia and very large cell bodies. MvKinesin-9A is required for the correct placement of basal bodies along the organelle coil. Knockdowns of MvKinesin-9A have basal bodies and cilia that are irregularly positioned. Spermatozoid swimming behavior in MvKinesin-2 and -9A knockdowns is altered because of defects in axonemal placement or ciliogenesis. MvKinesin-2 knockdowns only quiver in place while MvKinesin-9A knockdowns swim erratically compared to controls. In contrast, spermatozoids produced after the silencing of MvKinesin-9B exhibit normal morphology and swimming behavior, though development is slower than normal for these gametes. Our results show that MvKinesin-2 and MvKinesin-9A are required for ciliogenesis and motility in the Marsilea male gametophyte; however, these kinesins display atypical roles during these processes. MvKinesin-2 is required for cytokinesis, a role not typically associated with this protein, as well as for ciliogenesis during rapid development and MvKinesin-9A is needed for the correct orientation of basal bodies. Our results are the first to investigate the kinesin-linked mechanisms that regulate ciliogenesis in a land plant.

  • Centrin Is Necessary for the Formation of the Motile Apparatus in Spermatids of Marsilea
    Molecular biology of the cell, 2001
    Co-Authors: Vincent P. Klink, Stephen M. Wolniak
    Abstract:

    During spermiogenesis in the water fern, Marsilea vestita, basal bodies are synthesized de novo in cells that lack preexisting centrioles, in a particle known as a blepharoplast. We have focused on basal body assembly in this organism, asking what components are required for blepharoplast formation. Spermiogenesis is a rapid process that is activated by placing dry microspores into water. Dry microspores contain large quantities of stored protein and stored mRNA, and inhibitors reveal that certain proteins are translated from stored transcripts at specific times during development. Centrin translation accompanies blepharoplast appearance, while beta-tubulin translation occurs later, during axonemal formation. In asking whether centrin is an essential component of the blepharoplast, we used antisense, sense, and double-stranded RNA probes made from the Marsilea centrin cDNA, MvCen1, to block centrin translation. We employed a novel method to introduce these RNAs directly into the cells. Antisense and sense both arrest spermiogenesis when blepharoplasts should appear, and dsRNA made from the same cDNA is an effective inhibitor at concentrations at least 10 times lower than either of the single-stranded RNA used in these experiments. Blepharoplasts are undetectable and basal bodies fail to form. Antisense, sense, and dsRNA probes made from Marsilea beta-tubulin permitted normal development until axonemes form. In controls, antisense, sense, and dsRNA, made from a segment of HIV, had no effect on spermiogenesis. Immunoblots suggest that translational blocks induced by centrin-based RNA are gene specific and concentration dependent, since neither beta-tubulin- nor HIV-derived RNAs affects centrin translation. The disruption of centrin translation affects microtubule distributions in spermatids, since centrin appears to control formation of the cytoskeleton and motile apparatus. These results show that centrin plays an essential role in the formation of a motile apparatus during spermiogenesis of M. vestita.