Muschelkalk

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 1566 Experts worldwide ranked by ideXlab platform

Lobón J. L. - One of the best experts on this subject based on the ideXlab platform.

  • Modelo geológico 3D de la estructura de almacenamiento de CO2 de Caspe (Zaragoza, España)
    Sociedad Geológica de España, 2017
    Co-Authors: Mediato J. F., Garcia-crespo J., Ayala C., Izquierdo Esther, Lobón J. L.
    Abstract:

    The Caspe structure was formed by the convergence of the Iberian Range and the Catalonian Coastal Range, during the Tertiary compression. Traditionally, the Caspe structure has been interpreted from seismic profiles without considering surface structural data. Therefore, several models were obtained with different results. The aim of this study is to build a 3D geological model taking into account the structural data from the geological map, stress fields and lineaments from satellite imagery. Four surfaces have been modelled: Buntsandstein Top, Muschelkalk-I Top, Muschelkalk-II Top and Cenozoic Bottom. The presented 3D geometrical model shows two major thrusts of WSW- ENE direction with northward and southward vergence. In the major thrust sheet there is a large NW–SE trending anticline bounded by the two thrusts with small, associated reverse faults. The geometrical model is consistent with a transpressive, push-up structure that could be associated with the lateral continuation of the Segre fault beneath the Tertiary units of the Ebro basinPeer Reviewe

  • Modelo geológico 3D de la estructura de almacenamiento de CO2 de Caspe (Zaragoza, España)
    Sociedad Geológica de España, 2017
    Co-Authors: Mediato J. F., Garcia-crespo J., Ayala C., Izquierdo Esther, Lobón J. L.
    Abstract:

    La estructura geológica de Caspe se formó durante la convergencia de las Cordilleras Ibérica y Costero-Catalana. Las interpretaciones precedentes de los perfiles sísmicos que la atraviesan han obtenido morfologías de la estructura muy diferentes puesto que no consideran los datos geológicos superficiales. El objetivo de este trabajo es mostrar un modelo geológico 3D de la estructura de Caspe obtenido de una nueva interpretación de los perfiles sísmicos ajustándose a los datos geológicos: cartografía geológica, el campo de esfuerzos y los lineamientos. Se han modelado 4 superficies: techo de Buntsandstein, techo del Muschelkalk-I, techo del Muschelkalk-II y base del Cenozoico. El modelo obtenido muestra dos cabalgamientos OSO-ENE principales con vergencias contrarias. En la lámina cabalgante principal hay un anticlinal de dirección NO-SE limitado por pequeños cabalgamientos y fallas inversas asociados. El modelo geométrico es consistente con una estructura transpresiva tipo push-up que puede asociarse con la continuidad de la falla del Segre debajo de las unidades terciarias de la cuenca del Ebro.Peer Reviewe

Mediato J. F. - One of the best experts on this subject based on the ideXlab platform.

  • Modelo geológico 3D de la estructura de almacenamiento de CO2 de Caspe (Zaragoza, España)
    Sociedad Geológica de España, 2017
    Co-Authors: Mediato J. F., Garcia-crespo J., Ayala C., Izquierdo Esther, Lobón J. L.
    Abstract:

    The Caspe structure was formed by the convergence of the Iberian Range and the Catalonian Coastal Range, during the Tertiary compression. Traditionally, the Caspe structure has been interpreted from seismic profiles without considering surface structural data. Therefore, several models were obtained with different results. The aim of this study is to build a 3D geological model taking into account the structural data from the geological map, stress fields and lineaments from satellite imagery. Four surfaces have been modelled: Buntsandstein Top, Muschelkalk-I Top, Muschelkalk-II Top and Cenozoic Bottom. The presented 3D geometrical model shows two major thrusts of WSW- ENE direction with northward and southward vergence. In the major thrust sheet there is a large NW–SE trending anticline bounded by the two thrusts with small, associated reverse faults. The geometrical model is consistent with a transpressive, push-up structure that could be associated with the lateral continuation of the Segre fault beneath the Tertiary units of the Ebro basinPeer Reviewe

  • Modelo geológico 3D de la estructura de almacenamiento de CO2 de Caspe (Zaragoza, España)
    Sociedad Geológica de España, 2017
    Co-Authors: Mediato J. F., Garcia-crespo J., Ayala C., Izquierdo Esther, Lobón J. L.
    Abstract:

    La estructura geológica de Caspe se formó durante la convergencia de las Cordilleras Ibérica y Costero-Catalana. Las interpretaciones precedentes de los perfiles sísmicos que la atraviesan han obtenido morfologías de la estructura muy diferentes puesto que no consideran los datos geológicos superficiales. El objetivo de este trabajo es mostrar un modelo geológico 3D de la estructura de Caspe obtenido de una nueva interpretación de los perfiles sísmicos ajustándose a los datos geológicos: cartografía geológica, el campo de esfuerzos y los lineamientos. Se han modelado 4 superficies: techo de Buntsandstein, techo del Muschelkalk-I, techo del Muschelkalk-II y base del Cenozoico. El modelo obtenido muestra dos cabalgamientos OSO-ENE principales con vergencias contrarias. En la lámina cabalgante principal hay un anticlinal de dirección NO-SE limitado por pequeños cabalgamientos y fallas inversas asociados. El modelo geométrico es consistente con una estructura transpresiva tipo push-up que puede asociarse con la continuidad de la falla del Segre debajo de las unidades terciarias de la cuenca del Ebro.Peer Reviewe

  • Three-dimensional Reconstruction of the Caspe Geological Structure (Spain) for Evaluation as a Potential CO2 Storage Site
    'Elsevier BV', 2017
    Co-Authors: Mediato J. F., Garcia-crespo J., Ayala C., Izquierdo Esther, García-lobón J.l., Pueyo, Emilio L., Molinero R.
    Abstract:

    The Caspe geological structure was formed by the convergence of the Iberian Range and the Catalonian Coastal Range, during the Tertiary compression. Traditionally, the Caspe structure has been interpreted from seismic profiles without considering surface structural data. The aim of this study is to build a 3D geological model taking into account the structural data from the geological map, stress fields and lineaments, and evaluate its possibility as potential CO2 storage site. Four surfaces have been modelled: Buntsandstein Top, Muschelkalk-I Top, Muschelkalk-II Top and Cenozoic Bottom. Considering the geometry and depth for storage the target reservoir was considered to be the Buntsandstein facies. The available seismic data indicate that the Buntsandstein facies top is at approximately 500 m depth and hosts a deep saline aquifer. The target reservoir series include the conglomerate and sandstone of the Hoz del Gallo and Cañizar Fms (Buntsandstein Facies) with an average thickness of 500 m and 21% porosity. The seal comprises the shales and silts of the Röt Fm with an average thickness of 100-150 m. The structure volume was calculated based on the -500 mbsl for the Buntsandstein top deepest closed contour lines. The estimated volume is 5,800 Mm3 with most of CO2 in gaseous state.Financial support for this study was received from the Spanish administration through the Instituto para la Reestructuración de la Minería del Carbón y el Desarrollo Alternativo de las Comarcas Mineras (IRMC).Peer reviewe

H. Hagdorn - One of the best experts on this subject based on the ideXlab platform.

  • Encrinus aculeatus von Meyer, 1849 (Crinoidea, Encrinidae) from the Middle Triassic of Val Brembana (Alpi Orobie, Bergamo, Italy)
    'Springer Science and Business Media LLC', 2018
    Co-Authors: H. Hagdorn, F. Berra, A. Tintori
    Abstract:

    The Triassic crinoid Encrinus aculeatus is described from a single bedding plane of uncertain Pelsonian or early Illyrian or (less probable) late Ladinian origin from Val Brembana (Alpi Orobie, Bergamo, Italy) based on 36 more or less complete crowns and columns. The specimens represent an obrutional echinoderm lagerstätte of the Muschelkalk type. The individuals are semi-adult and juvenile; adult individuals are lacking. Morphological description and comparison with the holotype and additional material from the Lower Muschelkalk and basal Middle Muschelkalk of Upper Silesia (Poland) prove the assignment to Encrinus aculeatus. However, the species concept of genus Encrinus is critical because several characters are inconsistent. E. aculeatus occurs in the Middle Triassic (Bithynian to early Illyrian, ? early Ladinian) of the western Tethys shelf and Peritethys basins (Southern Alps, Balaton Upland, Germanic Basin). Encrinus aculeatus is regarded ancestral to the Upper Muschelkalk (latest Illyrian) E. liliiformis. Until now, E. liliiformis has not yet been proven with certainty from outside the Germanic Basin; references are based on isolated and undiagnostic material

  • Encrinus aculeatus von Meyer, 1849 (Crinoidea, Encrinidae) from the Middle Triassic of Val Brembana (Alpi Orobie, Bergamo, Italy)
    'Springer Science and Business Media LLC', 2018
    Co-Authors: H. Hagdorn, F. Berra, A. Tintori
    Abstract:

    The Triassic crinoid Encrinus aculeatus is described from a single bedding plane of uncertain Pelsonian or early Illyrian or (less probable) late Ladinian origin from Val Brembana (Alpi Orobie, Bergamo, Italy) based on 36 more or less complete crowns and columns. The specimens represent an obrutional echinoderm lagerst\ue4tte of the Muschelkalk type. The individuals are semi-adult and juvenile; adult individuals are lacking. Morphological description and comparison with the holotype and additional material from the Lower Muschelkalk and basal Middle Muschelkalk of Upper Silesia (Poland) prove the assignment to Encrinus aculeatus. However, the species concept of genus Encrinus is critical because several characters are inconsistent. E. aculeatus occurs in the Middle Triassic (Bithynian to early Illyrian, ? early Ladinian) of the western Tethys shelf and Peritethys basins (Southern Alps, Balaton Upland, Germanic Basin). Encrinus aculeatus is regarded ancestral to the Upper Muschelkalk (latest Illyrian) E. liliiformis. Until now, E. liliiformis has not yet been proven with certainty from outside the Germanic Basin; references are based on isolated and undiagnostic material

  • Immigrations of crinoids into the german Muschelkalk basin
    Sedimentary and Evolutionary Cycles, 2024
    Co-Authors: H. Hagdorn
    Abstract:

    Since Muschelkalk crinoids were stenohaline and required hard substrates to get attached, they could settle continuously only on paleohighs near the connection to the Tethys. In Upper Muschelkalk times they managed to spread from these centers throughout the western parts of the basin as bottoms became shelly due to regressive conditions. In the Lower Muschelkalk basin continuous settlement was possible only near the eastern gates, from where crinoids spread to the West together with the oolitic Schaumkalk facies. In contrast to the less substrate-controlled ceratites and conodontophorids, crinoids fail to show endemic evolution.

Garcia-crespo J. - One of the best experts on this subject based on the ideXlab platform.

  • Three-dimensional Reconstruction of the Caspe Geological Structure (Spain) for Evaluation as a Potential CO2 Storage Site
    2018
    Co-Authors: Mediato J.f., Garcia-crespo J., Ayala C., Izquierdo E., García-lobón J.l., Pueyo E.l., Molinero R.
    Abstract:

    The Caspe geological structure was formed by the convergence of the Iberian Range and the Catalonian Coastal Range, during the Tertiary compression. Traditionally, the Caspe structure has been interpreted from seismic profiles without considering surface structural data. The aim of this study is to build a 3D geological model taking into account the structural data from the geological map, stress fields and lineaments, and evaluate its possibility as potential CO2 storage site. Four surfaces have been modelled: Buntsandstein Top, Muschelkalk-I Top, Muschelkalk-II Top and Cenozoic Bottom. Considering the geometry and depth for storage the target reservoir was considered to be the Buntsandstein facies. The available seismic data indicate that the Buntsandstein facies top is at approximately 500 m depth and hosts a deep saline aquifer. The target reservoir series include the conglomerate and sandstone of the Hoz del Gallo and Cañizar Fms (Buntsandstein Facies) with an average thickness of 500 m and 21% porosity. The seal comprises the shales and silts of the Röt Fm with an average thickness of 100-150 m. The structure volume was calculated based on the -500 mbsl for the Buntsandstein top deepest closed contour lines. The estimated volume is 5, 800 Mm3 with most of CO2 in gaseous state

  • Modelo geológico 3D de la estructura de almacenamiento de CO2 de Caspe (Zaragoza, España)
    Sociedad Geológica de España, 2017
    Co-Authors: Mediato J. F., Garcia-crespo J., Ayala C., Izquierdo Esther, Lobón J. L.
    Abstract:

    The Caspe structure was formed by the convergence of the Iberian Range and the Catalonian Coastal Range, during the Tertiary compression. Traditionally, the Caspe structure has been interpreted from seismic profiles without considering surface structural data. Therefore, several models were obtained with different results. The aim of this study is to build a 3D geological model taking into account the structural data from the geological map, stress fields and lineaments from satellite imagery. Four surfaces have been modelled: Buntsandstein Top, Muschelkalk-I Top, Muschelkalk-II Top and Cenozoic Bottom. The presented 3D geometrical model shows two major thrusts of WSW- ENE direction with northward and southward vergence. In the major thrust sheet there is a large NW–SE trending anticline bounded by the two thrusts with small, associated reverse faults. The geometrical model is consistent with a transpressive, push-up structure that could be associated with the lateral continuation of the Segre fault beneath the Tertiary units of the Ebro basinPeer Reviewe

  • Modelo geológico 3D de la estructura de almacenamiento de CO2 de Caspe (Zaragoza, España)
    Sociedad Geológica de España, 2017
    Co-Authors: Mediato J. F., Garcia-crespo J., Ayala C., Izquierdo Esther, Lobón J. L.
    Abstract:

    La estructura geológica de Caspe se formó durante la convergencia de las Cordilleras Ibérica y Costero-Catalana. Las interpretaciones precedentes de los perfiles sísmicos que la atraviesan han obtenido morfologías de la estructura muy diferentes puesto que no consideran los datos geológicos superficiales. El objetivo de este trabajo es mostrar un modelo geológico 3D de la estructura de Caspe obtenido de una nueva interpretación de los perfiles sísmicos ajustándose a los datos geológicos: cartografía geológica, el campo de esfuerzos y los lineamientos. Se han modelado 4 superficies: techo de Buntsandstein, techo del Muschelkalk-I, techo del Muschelkalk-II y base del Cenozoico. El modelo obtenido muestra dos cabalgamientos OSO-ENE principales con vergencias contrarias. En la lámina cabalgante principal hay un anticlinal de dirección NO-SE limitado por pequeños cabalgamientos y fallas inversas asociados. El modelo geométrico es consistente con una estructura transpresiva tipo push-up que puede asociarse con la continuidad de la falla del Segre debajo de las unidades terciarias de la cuenca del Ebro.Peer Reviewe

  • Three-dimensional Reconstruction of the Caspe Geological Structure (Spain) for Evaluation as a Potential CO2 Storage Site
    'Elsevier BV', 2017
    Co-Authors: Mediato J. F., Garcia-crespo J., Ayala C., Izquierdo Esther, García-lobón J.l., Pueyo, Emilio L., Molinero R.
    Abstract:

    The Caspe geological structure was formed by the convergence of the Iberian Range and the Catalonian Coastal Range, during the Tertiary compression. Traditionally, the Caspe structure has been interpreted from seismic profiles without considering surface structural data. The aim of this study is to build a 3D geological model taking into account the structural data from the geological map, stress fields and lineaments, and evaluate its possibility as potential CO2 storage site. Four surfaces have been modelled: Buntsandstein Top, Muschelkalk-I Top, Muschelkalk-II Top and Cenozoic Bottom. Considering the geometry and depth for storage the target reservoir was considered to be the Buntsandstein facies. The available seismic data indicate that the Buntsandstein facies top is at approximately 500 m depth and hosts a deep saline aquifer. The target reservoir series include the conglomerate and sandstone of the Hoz del Gallo and Cañizar Fms (Buntsandstein Facies) with an average thickness of 500 m and 21% porosity. The seal comprises the shales and silts of the Röt Fm with an average thickness of 100-150 m. The structure volume was calculated based on the -500 mbsl for the Buntsandstein top deepest closed contour lines. The estimated volume is 5,800 Mm3 with most of CO2 in gaseous state.Financial support for this study was received from the Spanish administration through the Instituto para la Reestructuración de la Minería del Carbón y el Desarrollo Alternativo de las Comarcas Mineras (IRMC).Peer reviewe

Ayala C. - One of the best experts on this subject based on the ideXlab platform.

  • Three-dimensional Reconstruction of the Caspe Geological Structure (Spain) for Evaluation as a Potential CO2 Storage Site
    2018
    Co-Authors: Mediato J.f., Garcia-crespo J., Ayala C., Izquierdo E., García-lobón J.l., Pueyo E.l., Molinero R.
    Abstract:

    The Caspe geological structure was formed by the convergence of the Iberian Range and the Catalonian Coastal Range, during the Tertiary compression. Traditionally, the Caspe structure has been interpreted from seismic profiles without considering surface structural data. The aim of this study is to build a 3D geological model taking into account the structural data from the geological map, stress fields and lineaments, and evaluate its possibility as potential CO2 storage site. Four surfaces have been modelled: Buntsandstein Top, Muschelkalk-I Top, Muschelkalk-II Top and Cenozoic Bottom. Considering the geometry and depth for storage the target reservoir was considered to be the Buntsandstein facies. The available seismic data indicate that the Buntsandstein facies top is at approximately 500 m depth and hosts a deep saline aquifer. The target reservoir series include the conglomerate and sandstone of the Hoz del Gallo and Cañizar Fms (Buntsandstein Facies) with an average thickness of 500 m and 21% porosity. The seal comprises the shales and silts of the Röt Fm with an average thickness of 100-150 m. The structure volume was calculated based on the -500 mbsl for the Buntsandstein top deepest closed contour lines. The estimated volume is 5, 800 Mm3 with most of CO2 in gaseous state

  • Modelo geológico 3D de la estructura de almacenamiento de CO2 de Caspe (Zaragoza, España)
    Sociedad Geológica de España, 2017
    Co-Authors: Mediato J. F., Garcia-crespo J., Ayala C., Izquierdo Esther, Lobón J. L.
    Abstract:

    The Caspe structure was formed by the convergence of the Iberian Range and the Catalonian Coastal Range, during the Tertiary compression. Traditionally, the Caspe structure has been interpreted from seismic profiles without considering surface structural data. Therefore, several models were obtained with different results. The aim of this study is to build a 3D geological model taking into account the structural data from the geological map, stress fields and lineaments from satellite imagery. Four surfaces have been modelled: Buntsandstein Top, Muschelkalk-I Top, Muschelkalk-II Top and Cenozoic Bottom. The presented 3D geometrical model shows two major thrusts of WSW- ENE direction with northward and southward vergence. In the major thrust sheet there is a large NW–SE trending anticline bounded by the two thrusts with small, associated reverse faults. The geometrical model is consistent with a transpressive, push-up structure that could be associated with the lateral continuation of the Segre fault beneath the Tertiary units of the Ebro basinPeer Reviewe

  • Modelo geológico 3D de la estructura de almacenamiento de CO2 de Caspe (Zaragoza, España)
    Sociedad Geológica de España, 2017
    Co-Authors: Mediato J. F., Garcia-crespo J., Ayala C., Izquierdo Esther, Lobón J. L.
    Abstract:

    La estructura geológica de Caspe se formó durante la convergencia de las Cordilleras Ibérica y Costero-Catalana. Las interpretaciones precedentes de los perfiles sísmicos que la atraviesan han obtenido morfologías de la estructura muy diferentes puesto que no consideran los datos geológicos superficiales. El objetivo de este trabajo es mostrar un modelo geológico 3D de la estructura de Caspe obtenido de una nueva interpretación de los perfiles sísmicos ajustándose a los datos geológicos: cartografía geológica, el campo de esfuerzos y los lineamientos. Se han modelado 4 superficies: techo de Buntsandstein, techo del Muschelkalk-I, techo del Muschelkalk-II y base del Cenozoico. El modelo obtenido muestra dos cabalgamientos OSO-ENE principales con vergencias contrarias. En la lámina cabalgante principal hay un anticlinal de dirección NO-SE limitado por pequeños cabalgamientos y fallas inversas asociados. El modelo geométrico es consistente con una estructura transpresiva tipo push-up que puede asociarse con la continuidad de la falla del Segre debajo de las unidades terciarias de la cuenca del Ebro.Peer Reviewe

  • Three-dimensional Reconstruction of the Caspe Geological Structure (Spain) for Evaluation as a Potential CO2 Storage Site
    'Elsevier BV', 2017
    Co-Authors: Mediato J. F., Garcia-crespo J., Ayala C., Izquierdo Esther, García-lobón J.l., Pueyo, Emilio L., Molinero R.
    Abstract:

    The Caspe geological structure was formed by the convergence of the Iberian Range and the Catalonian Coastal Range, during the Tertiary compression. Traditionally, the Caspe structure has been interpreted from seismic profiles without considering surface structural data. The aim of this study is to build a 3D geological model taking into account the structural data from the geological map, stress fields and lineaments, and evaluate its possibility as potential CO2 storage site. Four surfaces have been modelled: Buntsandstein Top, Muschelkalk-I Top, Muschelkalk-II Top and Cenozoic Bottom. Considering the geometry and depth for storage the target reservoir was considered to be the Buntsandstein facies. The available seismic data indicate that the Buntsandstein facies top is at approximately 500 m depth and hosts a deep saline aquifer. The target reservoir series include the conglomerate and sandstone of the Hoz del Gallo and Cañizar Fms (Buntsandstein Facies) with an average thickness of 500 m and 21% porosity. The seal comprises the shales and silts of the Röt Fm with an average thickness of 100-150 m. The structure volume was calculated based on the -500 mbsl for the Buntsandstein top deepest closed contour lines. The estimated volume is 5,800 Mm3 with most of CO2 in gaseous state.Financial support for this study was received from the Spanish administration through the Instituto para la Reestructuración de la Minería del Carbón y el Desarrollo Alternativo de las Comarcas Mineras (IRMC).Peer reviewe