Mutant Drosophila

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 243 Experts worldwide ranked by ideXlab platform

Ehud Y Isacoff - One of the best experts on this subject based on the ideXlab platform.

Hui Xu - One of the best experts on this subject based on the ideXlab platform.

  • the effect of inulin on lifespan related gene expression and gut microbiota in inrp5545 tm3 Mutant Drosophila melanogaster a preliminary study
    Nutrients, 2019
    Co-Authors: Yuling Dong, Weichao Yang, Beibei Du, Hui Xu
    Abstract:

    Inulin is considered an efficient prebiotic and is beneficial for metabolic diseases via promoting intestinal probiotic enrichment and the metabolites of short-chain fatty acids (SCFAs). However, the effect of inulin on patients with InR deficiencies has seldom been reported. In this study, the lifespan, related gene expression, and gut microbiota of InRp5545/TM3 (insulin receptor Mutant) Drosophila melanogaster under inulin treatment were investigated. The results showed that the lifespan was extended in only males and not in females. Furthermore, distinctly different patterns of gene expression were found between males and females, especially in the insulin/insulin-like growth factor (IGF)-like signalling (IIS) and target of rapamycin (TOR) pathways. Additionally, as a link between inulin and lifespan responses, the gut microbiota was distinctly separated by gender in both the standard diet group and the inulin treatment group, and the relationship between lifespan and the gut microbiota community was stronger in male flies than in females. This study provides preliminary evidence for the gender-dependent lifespan responses to inulin in insulin signalling-deficient Drosophila. However, controls such as wild-type and TM3 flies, and more InR Mutant strains with different genetic backgrounds need to be further investigated to elucidate the mechanisms underlying the phenomenon.

  • The Effect of Inulin on Lifespan, Related Gene Expression and Gut Microbiota in InRp5545/TM3 Mutant Drosophila melanogaster: A Preliminary Study.
    Nutrients, 2019
    Co-Authors: Yuling Dong, Weichao Yang, Beibei Du, Shuang Ma, Hui Xu
    Abstract:

    Inulin is considered an efficient prebiotic and is beneficial for metabolic diseases via promoting intestinal probiotic enrichment and the metabolites of short-chain fatty acids (SCFAs). However, the effect of inulin on patients with InR deficiencies has seldom been reported. In this study, the lifespan, related gene expression, and gut microbiota of InRp5545/TM3 (insulin receptor Mutant) Drosophila melanogaster under inulin treatment were investigated. The results showed that the lifespan was extended in only males and not in females. Furthermore, distinctly different patterns of gene expression were found between males and females, especially in the insulin/insulin-like growth factor (IGF)-like signalling (IIS) and target of rapamycin (TOR) pathways. Additionally, as a link between inulin and lifespan responses, the gut microbiota was distinctly separated by gender in both the standard diet group and the inulin treatment group, and the relationship between lifespan and the gut microbiota community was stronger in male flies than in females. This study provides preliminary evidence for the gender-dependent lifespan responses to inulin in insulin signalling-deficient Drosophila. However, controls such as wild-type and TM3 flies, and more InR Mutant strains with different genetic backgrounds need to be further investigated to elucidate the mechanisms underlying the phenomenon.

Yuling Dong - One of the best experts on this subject based on the ideXlab platform.

  • the effect of inulin on lifespan related gene expression and gut microbiota in inrp5545 tm3 Mutant Drosophila melanogaster a preliminary study
    Nutrients, 2019
    Co-Authors: Yuling Dong, Weichao Yang, Beibei Du, Hui Xu
    Abstract:

    Inulin is considered an efficient prebiotic and is beneficial for metabolic diseases via promoting intestinal probiotic enrichment and the metabolites of short-chain fatty acids (SCFAs). However, the effect of inulin on patients with InR deficiencies has seldom been reported. In this study, the lifespan, related gene expression, and gut microbiota of InRp5545/TM3 (insulin receptor Mutant) Drosophila melanogaster under inulin treatment were investigated. The results showed that the lifespan was extended in only males and not in females. Furthermore, distinctly different patterns of gene expression were found between males and females, especially in the insulin/insulin-like growth factor (IGF)-like signalling (IIS) and target of rapamycin (TOR) pathways. Additionally, as a link between inulin and lifespan responses, the gut microbiota was distinctly separated by gender in both the standard diet group and the inulin treatment group, and the relationship between lifespan and the gut microbiota community was stronger in male flies than in females. This study provides preliminary evidence for the gender-dependent lifespan responses to inulin in insulin signalling-deficient Drosophila. However, controls such as wild-type and TM3 flies, and more InR Mutant strains with different genetic backgrounds need to be further investigated to elucidate the mechanisms underlying the phenomenon.

  • The Effect of Inulin on Lifespan, Related Gene Expression and Gut Microbiota in InRp5545/TM3 Mutant Drosophila melanogaster: A Preliminary Study.
    Nutrients, 2019
    Co-Authors: Yuling Dong, Weichao Yang, Beibei Du, Shuang Ma, Hui Xu
    Abstract:

    Inulin is considered an efficient prebiotic and is beneficial for metabolic diseases via promoting intestinal probiotic enrichment and the metabolites of short-chain fatty acids (SCFAs). However, the effect of inulin on patients with InR deficiencies has seldom been reported. In this study, the lifespan, related gene expression, and gut microbiota of InRp5545/TM3 (insulin receptor Mutant) Drosophila melanogaster under inulin treatment were investigated. The results showed that the lifespan was extended in only males and not in females. Furthermore, distinctly different patterns of gene expression were found between males and females, especially in the insulin/insulin-like growth factor (IGF)-like signalling (IIS) and target of rapamycin (TOR) pathways. Additionally, as a link between inulin and lifespan responses, the gut microbiota was distinctly separated by gender in both the standard diet group and the inulin treatment group, and the relationship between lifespan and the gut microbiota community was stronger in male flies than in females. This study provides preliminary evidence for the gender-dependent lifespan responses to inulin in insulin signalling-deficient Drosophila. However, controls such as wild-type and TM3 flies, and more InR Mutant strains with different genetic backgrounds need to be further investigated to elucidate the mechanisms underlying the phenomenon.

H L Atwood - One of the best experts on this subject based on the ideXlab platform.

  • quantal size and variation determined by vesicle size in normal and Mutant Drosophila glutamatergic synapses
    The Journal of Neuroscience, 2002
    Co-Authors: Shanker Karunanithi, Leo Marin, Kar Wong, H L Atwood
    Abstract:

    Quantal size and variation at chemical synapses could be determined presynaptically by the amount of neurotransmitter released from synaptic vesicles or postsynaptically by the number of receptors available for activation. We investigated these possibilities at Drosophila glutamatergic neuromuscular synapses formed by two separate motor neurons innervating the same muscle cell. At wild-type synapses of the two neurons we found a difference in quantal size corresponding to a difference in mean synaptic vesicle volume. The same finding applied to two Mutants ( dlg and lap ) in which synaptic vesicle size was altered. Quantal variances at wild-type and Mutant synapses were similar and could be accounted for by variation in vesicular volume. The linear relationship between quantal size and vesicular volume for several different genotypes indicates that glutamate is regulated homeostatically to the same intravesicular concentration in all cases. Thus functional differences in synaptic strength among glutamatergic neurons of Drosophila result in part from intrinsic differences in vesicle size.

Regis B Kelly - One of the best experts on this subject based on the ideXlab platform.

  • redistribution of synaptic vesicles and their proteins in temperature sensitive shibire ts1 Mutant Drosophila
    Proceedings of the National Academy of Sciences of the United States of America, 1995
    Co-Authors: J Van De Goor, Mani Ramaswami, Regis B Kelly
    Abstract:

    Abstract From an extract of Drosophila melanogaster head homogenates, a membrane fraction can be isolated that has the same sedimentation properties as vertebrate synaptic vesicles and contains Drosophila synaptotagmin. The fraction disappears from homogenates of temperature-sensitive (ts) Mutant shibire(ts1) (shi(ts1)) flies paralyzed by exposure to non-permissive temperatures, and reappears on return to permissive temperatures. Since reversible, temperature-dependent depletion of synaptic vesicles is known to occur in shibire(ts1) flies, we conclude that the fraction we have identified contains synaptic vesicles. We have examined the fate of synaptic vesicle membrane proteins in shibire flies at nonpermissive temperatures and found that all of these vesicle antigens are transferred to rapidly sedimenting membranes and codistribute with a plasma membrane marker by both glycerol velocity and metrizamide density sedimentation and by confocal microscopy. Three criteria were used to establish that other neuron-specific antigens--neuronal synaptobrevin and cysteine-string proteins--are legitimate components of synaptic vesicles: cosedimentation with Drosophila synaptotagmin, immunoadsorption, and disappearance of these antigens from the vesicle fractions in paralyzed shibire flies.