Mycobacterium antigen

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 63 Experts worldwide ranked by ideXlab platform

Antonio Campos-neto - One of the best experts on this subject based on the ideXlab platform.

  • Protection of mice and guinea pigs against tuberculosis induced by immunization with a single Mycobacterium tuberculosis recombinant antigen, MTB41.
    Vaccine, 2005
    Co-Authors: Yasir A. W. Skeiky, Mark R. Alderson, Pamela J. Ovendale, Yves Lobet, Wilfried Dalemans, Ian M. Orme, Steven G. Reed, Antonio Campos-neto
    Abstract:

    MTB41 is a Mycobacterium antigen that is recognized by CD4+ T cells early after experimental infection of mice with Mycobacterium tuberculosis and by PBMC from healthy PPD positive individuals. Immunization of mice with plasmid DNA encoding the MTB41 gene sequence results in the development of antigen-specific CD4+ and CD8+ T cells, and protection against challenge with virulent M. tuberculosis. In the present studies, in contrast to DNA immunization, we show, that a strong MTB41-specific CD4+ T cell response, but no MHC class I restricted cytotoxic T lymphocyte (CTL) activity is detected in the spleen cells of infected mice. Therefore, this data suggests that the induction of CD8+ T cell response to MTB41 epitopes by DNA immunization may not be relevant to protection because these epitopes are not recognized during the infectious process. We also compared the repertoire of rMTB41 epitope recognition by CD4+ T cells of M. tuberculosis-infected mice with the recognition repertoire of mice immunized with the recombinant rMTB41 protein. Both regimens of sensitization lead to the recognition of the same molecular epitope. Coincidentally, immunization with the soluble recombinant protein plus adjuvant, a regimen known to generate primarily CD4+ T cells, resulted in induction of protection comparable to BCG in two well-established animal models of tuberculosis (mice and guinea pigs).

Yasir A. W. Skeiky - One of the best experts on this subject based on the ideXlab platform.

  • Protection of mice and guinea pigs against tuberculosis induced by immunization with a single Mycobacterium tuberculosis recombinant antigen, MTB41.
    Vaccine, 2005
    Co-Authors: Yasir A. W. Skeiky, Mark R. Alderson, Pamela J. Ovendale, Yves Lobet, Wilfried Dalemans, Ian M. Orme, Steven G. Reed, Antonio Campos-neto
    Abstract:

    MTB41 is a Mycobacterium antigen that is recognized by CD4+ T cells early after experimental infection of mice with Mycobacterium tuberculosis and by PBMC from healthy PPD positive individuals. Immunization of mice with plasmid DNA encoding the MTB41 gene sequence results in the development of antigen-specific CD4+ and CD8+ T cells, and protection against challenge with virulent M. tuberculosis. In the present studies, in contrast to DNA immunization, we show, that a strong MTB41-specific CD4+ T cell response, but no MHC class I restricted cytotoxic T lymphocyte (CTL) activity is detected in the spleen cells of infected mice. Therefore, this data suggests that the induction of CD8+ T cell response to MTB41 epitopes by DNA immunization may not be relevant to protection because these epitopes are not recognized during the infectious process. We also compared the repertoire of rMTB41 epitope recognition by CD4+ T cells of M. tuberculosis-infected mice with the recognition repertoire of mice immunized with the recombinant rMTB41 protein. Both regimens of sensitization lead to the recognition of the same molecular epitope. Coincidentally, immunization with the soluble recombinant protein plus adjuvant, a regimen known to generate primarily CD4+ T cells, resulted in induction of protection comparable to BCG in two well-established animal models of tuberculosis (mice and guinea pigs).

Jianping Xie - One of the best experts on this subject based on the ideXlab platform.

  • Ins and outs of Mycobacterium tuberculosis PPE family in pathogenesis and implications for novel measures against tuberculosis
    Journal of cellular biochemistry, 2012
    Co-Authors: Wanyan Deng, Jianping Xie
    Abstract:

    Mycobacterium tuberculosis is the most successful pathogen with multiple mechanisms to subvert host immune response, resulting in insidious disease. A unique Mycobacterium antigen family termed PPE (Pro-Pro-Glu) has long been widely speculated as "molecular mantra" to escape host immunity. Members of this family are characterized by a conserved N terminal and a variable C terminal. This family associated closely with ESAT-6(ESX) secretion system and largely located in cell wall or cell membrane. The expression of PPE protein is temporally regulated, and highly expressed during M. tuberculosis persistence. Importantly, the distribution of PPE family is so far limited to Mycobacterium genus, prevalent among pathogenic Mycobacterium species. It is tempting to explore this family due to its potential in the latency and reactivation of M. tuberculosis. The evolution, structure, and functions of most PPE proteins remain elusive. The understanding of these questions will deepen our appreciation of the pathogenesis of M. tuberculosis and accelerate novel anti-TB measures discovery.

  • Novel insights into Mycobacterium antigen Ag85 biology and implications in countermeasures for M. tuberculosis.
    Critical reviews in eukaryotic gene expression, 2012
    Co-Authors: Xiemei Tang, Wanyan Deng, Jianping Xie
    Abstract:

    Tuberculosis remains one of the most prevalent and deadly infectious diseases, largely due to the emergence of multidrug-resistant and extensive drug-resistant Mycobacterium tuberculosis, especially the coinfection with HIV. Mycobacterium Ag85 complex (Ag85A, B, and C), with a carboxylesterase consensus sequence and conserved surface catalysis residues, involves in cell wall biosynthesis and the trigger of the host immune response. The physiological function, structures, distributions, and molecular mechanisms of regulations as well as their implications in novel vaccines and diagnostics against tuberculosis are summarized. Special focus is the regulation underlying the Ag85 expression. This will facilitate in-depth understanding of the role of Ag85 and developing better novel measures against M. tuberculosis infection.

Steven G. Reed - One of the best experts on this subject based on the ideXlab platform.

  • Protection of mice and guinea pigs against tuberculosis induced by immunization with a single Mycobacterium tuberculosis recombinant antigen, MTB41.
    Vaccine, 2005
    Co-Authors: Yasir A. W. Skeiky, Mark R. Alderson, Pamela J. Ovendale, Yves Lobet, Wilfried Dalemans, Ian M. Orme, Steven G. Reed, Antonio Campos-neto
    Abstract:

    MTB41 is a Mycobacterium antigen that is recognized by CD4+ T cells early after experimental infection of mice with Mycobacterium tuberculosis and by PBMC from healthy PPD positive individuals. Immunization of mice with plasmid DNA encoding the MTB41 gene sequence results in the development of antigen-specific CD4+ and CD8+ T cells, and protection against challenge with virulent M. tuberculosis. In the present studies, in contrast to DNA immunization, we show, that a strong MTB41-specific CD4+ T cell response, but no MHC class I restricted cytotoxic T lymphocyte (CTL) activity is detected in the spleen cells of infected mice. Therefore, this data suggests that the induction of CD8+ T cell response to MTB41 epitopes by DNA immunization may not be relevant to protection because these epitopes are not recognized during the infectious process. We also compared the repertoire of rMTB41 epitope recognition by CD4+ T cells of M. tuberculosis-infected mice with the recognition repertoire of mice immunized with the recombinant rMTB41 protein. Both regimens of sensitization lead to the recognition of the same molecular epitope. Coincidentally, immunization with the soluble recombinant protein plus adjuvant, a regimen known to generate primarily CD4+ T cells, resulted in induction of protection comparable to BCG in two well-established animal models of tuberculosis (mice and guinea pigs).

Ian M. Orme - One of the best experts on this subject based on the ideXlab platform.

  • Protection of mice and guinea pigs against tuberculosis induced by immunization with a single Mycobacterium tuberculosis recombinant antigen, MTB41.
    Vaccine, 2005
    Co-Authors: Yasir A. W. Skeiky, Mark R. Alderson, Pamela J. Ovendale, Yves Lobet, Wilfried Dalemans, Ian M. Orme, Steven G. Reed, Antonio Campos-neto
    Abstract:

    MTB41 is a Mycobacterium antigen that is recognized by CD4+ T cells early after experimental infection of mice with Mycobacterium tuberculosis and by PBMC from healthy PPD positive individuals. Immunization of mice with plasmid DNA encoding the MTB41 gene sequence results in the development of antigen-specific CD4+ and CD8+ T cells, and protection against challenge with virulent M. tuberculosis. In the present studies, in contrast to DNA immunization, we show, that a strong MTB41-specific CD4+ T cell response, but no MHC class I restricted cytotoxic T lymphocyte (CTL) activity is detected in the spleen cells of infected mice. Therefore, this data suggests that the induction of CD8+ T cell response to MTB41 epitopes by DNA immunization may not be relevant to protection because these epitopes are not recognized during the infectious process. We also compared the repertoire of rMTB41 epitope recognition by CD4+ T cells of M. tuberculosis-infected mice with the recognition repertoire of mice immunized with the recombinant rMTB41 protein. Both regimens of sensitization lead to the recognition of the same molecular epitope. Coincidentally, immunization with the soluble recombinant protein plus adjuvant, a regimen known to generate primarily CD4+ T cells, resulted in induction of protection comparable to BCG in two well-established animal models of tuberculosis (mice and guinea pigs).