The Experts below are selected from a list of 318 Experts worldwide ranked by ideXlab platform
Josep Caixach - One of the best experts on this subject based on the ideXlab platform.
-
analysis of nitrosamines in water by automated spe and isotope dilution gc hrms occurrence in the different steps of a drinking water treatment plant and in chlorinated samples from a reservoir and a sewage treatment plant effluent
Talanta, 2008Co-Authors: Carles Planas, Oscar Palacios, Francesc Ventura, J Rivera, Josep CaixachAbstract:A method based on automated solid-phase extraction (SPE) and isotope dilution gas chromatography/high resolution mass spectrometry (GC/HRMS) has been developed for the analysis of nine nitrosamines in water samples. The combination of automated SPE and GC/HRMS for the analysis of nitrosamines has not been reported previously. The method shows as advantages the selectivity and sensitivity of GC/HRMS analysis and the high efficiency of automated SPE with coconut charcoal EPA 521 cartridges. Low method detection limits (MDLs) were achieved, along with a greater facility of the procedure and less dependence on the operator with regard to the methods based on manual SPE. Quality requirements for isotope dilution-based methods were accomplished for most analysed nitrosamines, regarding to trueness (80-120%), method precision (<15%) and MDLs (0.08-1.7 ng/L). Nineteen water samples (16 samples from a drinking water treatment plant {DWTP}, 2 chlorinated samples from a sewage treatment plant {STP} effluent, and 1 chlorinated sample from a reservoir) were analysed. Concentrations of nitrosamines in the STP effluent were 309.4 and 730.2 ng/L, being higher when higher doses of chlorine were applied. N-Nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) were the main compounds identified in the STP effluent, and NDEA was detected above 200 ng/L, regulatory level for NDMA in effluents stated in Ontario (Canada). Lower concentrations of nitrosamines were found in the reservoir (20.3 ng/L) and in the DWTP samples (n.d. -28.6 ng/L). NDMA and NDEA were respectively found in the reservoir and in treated and highly chlorinated DWTP samples at concentrations above 10 ng/L (guide value established in different countries). The highest concentrations of nitrosamines were found after chlorination and ozonation processes (ozonated, treated and highly chlorinated water) in DWTP samples.
-
analysis of nitrosamines in water by automated spe and isotope dilution gc hrms occurrence in the different steps of a drinking water treatment plant and in chlorinated samples from a reservoir and a sewage treatment plant effluent
Talanta, 2008Co-Authors: Carles Planas, Oscar Palacios, Francesc Ventura, J Rivera, Josep CaixachAbstract:Abstract A method based on automated solid-phase extraction (SPE) and isotope dilution gas chromatography/high resolution mass spectrometry (GC/HRMS) has been developed for the analysis of nine nitrosamines in water samples. The combination of automated SPE and GC/HRMS for the analysis of nitrosamines has not been reported previously. The method shows as advantages the selectivity and sensitivity of GC/HRMS analysis and the high efficiency of automated SPE with coconut charcoal EPA 521 cartridges. Low method detection limits (MDLs) were achieved, along with a greater facility of the procedure and less dependance on the operator with regard to the methods based on manual SPE. Quality requirements for isotope dilution-based methods were accomplished for most analysed nitrosamines, regarding to trueness (80–120%), method precision ( Nineteen water samples (16 samples from a drinking water treatment plant {DWTP}, 2 chlorinated samples from a sewage treatment plant {STP} effluent, and 1 chlorinated sample from a reservoir) were analysed. Concentrations of nitrosamines in the STP effluent were 309.4 and 730.2 ng/L, being higher when higher doses of chlorine were applied. N -Nitrosodimethylamine (NDMA) and N -nitrosodiethylamine (NDEA) were the main compounds identified in the STP effluent, and NDEA was detected above 200 ng/L, regulatory level for NDMA in effluents stated in Ontario (Canada). Lower concentrations of nitrosamines were found in the reservoir (20.3 ng/L) and in the DWTP samples (n.d. −28.6 ng/L). NDMA and NDEA were respectively found in the reservoir and in treated and highly chlorinated DWTP samples at concentrations above 10 ng/L (guide value established in different countries). The highest concentrations of nitrosamines were found after chlorination and ozonation processes (ozonated, treated and highly chlorinated water) in DWTP samples.
Carles Planas - One of the best experts on this subject based on the ideXlab platform.
-
analysis of nitrosamines in water by automated spe and isotope dilution gc hrms occurrence in the different steps of a drinking water treatment plant and in chlorinated samples from a reservoir and a sewage treatment plant effluent
Talanta, 2008Co-Authors: Carles Planas, Oscar Palacios, Francesc Ventura, J Rivera, Josep CaixachAbstract:A method based on automated solid-phase extraction (SPE) and isotope dilution gas chromatography/high resolution mass spectrometry (GC/HRMS) has been developed for the analysis of nine nitrosamines in water samples. The combination of automated SPE and GC/HRMS for the analysis of nitrosamines has not been reported previously. The method shows as advantages the selectivity and sensitivity of GC/HRMS analysis and the high efficiency of automated SPE with coconut charcoal EPA 521 cartridges. Low method detection limits (MDLs) were achieved, along with a greater facility of the procedure and less dependence on the operator with regard to the methods based on manual SPE. Quality requirements for isotope dilution-based methods were accomplished for most analysed nitrosamines, regarding to trueness (80-120%), method precision (<15%) and MDLs (0.08-1.7 ng/L). Nineteen water samples (16 samples from a drinking water treatment plant {DWTP}, 2 chlorinated samples from a sewage treatment plant {STP} effluent, and 1 chlorinated sample from a reservoir) were analysed. Concentrations of nitrosamines in the STP effluent were 309.4 and 730.2 ng/L, being higher when higher doses of chlorine were applied. N-Nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) were the main compounds identified in the STP effluent, and NDEA was detected above 200 ng/L, regulatory level for NDMA in effluents stated in Ontario (Canada). Lower concentrations of nitrosamines were found in the reservoir (20.3 ng/L) and in the DWTP samples (n.d. -28.6 ng/L). NDMA and NDEA were respectively found in the reservoir and in treated and highly chlorinated DWTP samples at concentrations above 10 ng/L (guide value established in different countries). The highest concentrations of nitrosamines were found after chlorination and ozonation processes (ozonated, treated and highly chlorinated water) in DWTP samples.
-
analysis of nitrosamines in water by automated spe and isotope dilution gc hrms occurrence in the different steps of a drinking water treatment plant and in chlorinated samples from a reservoir and a sewage treatment plant effluent
Talanta, 2008Co-Authors: Carles Planas, Oscar Palacios, Francesc Ventura, J Rivera, Josep CaixachAbstract:Abstract A method based on automated solid-phase extraction (SPE) and isotope dilution gas chromatography/high resolution mass spectrometry (GC/HRMS) has been developed for the analysis of nine nitrosamines in water samples. The combination of automated SPE and GC/HRMS for the analysis of nitrosamines has not been reported previously. The method shows as advantages the selectivity and sensitivity of GC/HRMS analysis and the high efficiency of automated SPE with coconut charcoal EPA 521 cartridges. Low method detection limits (MDLs) were achieved, along with a greater facility of the procedure and less dependance on the operator with regard to the methods based on manual SPE. Quality requirements for isotope dilution-based methods were accomplished for most analysed nitrosamines, regarding to trueness (80–120%), method precision ( Nineteen water samples (16 samples from a drinking water treatment plant {DWTP}, 2 chlorinated samples from a sewage treatment plant {STP} effluent, and 1 chlorinated sample from a reservoir) were analysed. Concentrations of nitrosamines in the STP effluent were 309.4 and 730.2 ng/L, being higher when higher doses of chlorine were applied. N -Nitrosodimethylamine (NDMA) and N -nitrosodiethylamine (NDEA) were the main compounds identified in the STP effluent, and NDEA was detected above 200 ng/L, regulatory level for NDMA in effluents stated in Ontario (Canada). Lower concentrations of nitrosamines were found in the reservoir (20.3 ng/L) and in the DWTP samples (n.d. −28.6 ng/L). NDMA and NDEA were respectively found in the reservoir and in treated and highly chlorinated DWTP samples at concentrations above 10 ng/L (guide value established in different countries). The highest concentrations of nitrosamines were found after chlorination and ozonation processes (ozonated, treated and highly chlorinated water) in DWTP samples.
Min Yang - One of the best experts on this subject based on the ideXlab platform.
-
occurrence and profiling of multiple nitrosamines in source water and drinking water of china
Science of The Total Environment, 2016Co-Authors: Wanfeng Wang, Jianwei Yu, Wei An, Min YangAbstract:Abstract The occurrence of multiple nitrosamines was investigated in 54 drinking water treatment plants (DWTPs) from 30 cities across major watersheds of China, and the formation potential (FP) and cancer risk of the dominant nitrosamines were studied for profiling purposes. The results showed that N-Nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA) and N-nitrosodi-n-butylamine (NDBA) were the most abundant in DWTPs, and the concentrations in source water and finished water samples were not detected (ND) − 53.6 ng/L (NDMA), ND − 68.5 ng/L (NDEA), ND − 48.2 ng/L (NDBA). The frequencies of detection in source waters were 64.8%, 61.1% and 51.8%, and 57.4%, 53.7%, and 37% for finished waters, respectively. Further study indicated that the FPs of the three main nitrosamines during chloramination were higher than those during chlorination and in drinking water. The results of Principal Components Analysis (PCA) showed that ammonia was the most closely associated factor in nitrosamine formation in the investigated source water; however, there was no significant correlation between nitrosamine-FPs and the values of dominant water-quality parameters. The advanced treatment units (i.e., ozonation and biological activated carbon) used in DWTPs were able to control the nitrosamine-FPs effectively after disinfection. The target pollutants posed median and maximum cancer risks of 2.99 × 10− 5 and 35.5 × 10− 5 to the local populations due to their occurrence in drinking water.
-
occurrence of nine nitrosamines and secondary amines in source water and drinking water potential of secondary amines as nitrosamine precursors
Water Research, 2011Co-Authors: Wanfeng Wang, Jianying Hu, Jianwei Yu, Wei An, Haifeng Zhang, Min YangAbstract:Abstract Due to their high carcinogenicity, the control of nitrosamines, a group of disinfection by-products (DBPs), is an important issue for drinking water supplies. In this study, a method using ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry was improved for simultaneously analyzing nine nitrosamines in source water and finished water samples of twelve drinking water treatment plants (DWTPs) in China. The method detection limits of the nine target analytes were 0.2–0.9 ng/L for the source water samples and 0.1–0.7 ng/L for the finished water samples. Of the nine nitrosamines, six (N-Nitrosodimethylamine (NDMA), nitrosodiethylamine (NDEA), N-nitrosomorpholine (NMor), N-nitrosodi-n-butylamine (NDBA), N-nitrosomethylethylamine (NMEA), and N-nitrosodiphenylamine (NDPhA)) were detected. The total nitrosamine concentrations in source water and finished water samples were no detection-42.4 ng/L and no detection-26.3 ng/L, respectively, and NDMA (no detection-13.9 ng/L and no detection-20.5 ng/L, respectively) and NDEA (no detection-16.3 ng/L and no detection-14.0 ng/L, respectively) were the most abundant. Meanwhile, the occurrence of nine secondary amines corresponding to the nine nitrosamines was also investigated. All of them except for di-n-propylamine were detected in some source water and finished water samples, and dimethylamine (no detection-3.9 μg/L and no detection-4.0 μg/L, respectively) and diethylamine (no detection-2.4 μg/L and no detection-1.8 μg/L, respectively) were the most abundant ones. Controlled experiments involving chloramination of four secondary amines confirmed that dimethylamine, diethylamine, morpholine and di-n-butylamine in water can form the corresponding nitrosamines, with diethylamine and morpholine showing significantly higher yields than dimethylamine which has already been identified as a precursor of NDMA. This study proved that diethylamine, morpholine and di-n-butylamine detected in raw water would be one of the important the precursors of NDEA, NMOR and NDBA, respectively, in drinking water.
Martin Reinhard - One of the best experts on this subject based on the ideXlab platform.
-
n nitrosodimethylamine ndma removal by reverse osmosis and uv treatment and analysis via lc ms ms
Water Research, 2008Co-Authors: Megan H Plumlee, Montserrat Lopezmesas, Andy Heidlberger, Kenneth P Ishida, Martin ReinhardAbstract:N-Nitrosodimethylamine (NDMA) is a probable human carcinogen found in ng/l concentrations in chlorinated and chloraminated water. A method was developed for the determination of ng/l levels of NDMA using liquid chromatography-tandem mass spectrometry (LC-MS/MS) preceded by sample concentration via solid-phase extraction with activated charcoal. Recoveries were greater than 90% and allowed a method reporting limit as low as 2ng/l. Using this method, the removal of NDMA was determined for the Interim Water Purification Facility (IWPF), an advanced wastewater treatment facility operated by the Orange County Water District (OCWD) in Southern California. The facility treats effluent from an activated sludge treatment plant with microfiltration (MF), reverse osmosis (RO), and an ultraviolet-hydrogen peroxide advanced oxidation process (UV-AOP). Six nitrosamines were surveyed: NDMA, N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr). Only NDMA was detected and at all treatment steps in the IWPF, with influent concentrations ranging from 20 to 59 ng/l. Removals for RO and UV ranged from 24% to 56% and 43% to 66%, respectively. Overall, 69+/-7% of the original NDMA concentration was removed from the product water across the advanced treatment process and, in combination with blending, the final concentration did not exceed the California drinking water notification level of 10 ng/l. NDMA removal data are consistent with findings reviewed for other advanced treatment facilities and laboratory studies.
-
evaluating the impacts of membrane type coating fouling chemical properties and water chemistry on reverse osmosis rejection of seven nitrosoalklyamines including ndma
Water Research, 2007Co-Authors: Eva Steinledarling, Megan H Plumlee, Marco Zedda, Harry F Ridgway, Martin ReinhardAbstract:Reverse osmosis (RO) treatment has been found to be effective for a wide range of organics but generally small, polar, uncharged molecules such as N-Nitrosodimethylamine (NDMA) can be poorly rejected. The rejection of seven N-nitrosoalkylamines with molecular masses in the range of 78-158Da, including NDMA, N-nitrosodiethylamine (NDEA), N-nitrosomethylethylamine (NMEA), N-nitrosodipropylamine (NDPA), N-nitrosodibutylamine (NDBA), N-nitrosopyrrolidine (NPyr), N-nitrosopiperidine (NPip) by three commercial brackish-water reverse osmosis membranes was studied in flat-sheet cells under cross-flow conditions. The membranes used were ESPA3 (Hydranautics), LFC3 (Hydranautics) and BW-30 (Dow/Filmtec), commonly used in water reuse applications. The effects of varying ionic strength and pH, dip-coating membranes with PEBAX 1657, a hydrophilic polymer, and artificial fouling with alginate on nitrosamine rejection were quantified. Rejection in deionized (DI) water increased with molecular mass from 56 to 70% for NDMA, to 80-91% for NMEA, 89-97% for NPyr, 92-98% for NDEA, and to beyond the detection limits for NPip, NDPA and NDBA. For the nitrosamines with quantifiable transmission, linear correlations (r(2)>0.97) were found between the number of methyl groups and the log(transmission), with factor 0.35 to 0.55 decreases in transmission per added methyl group. A PEBAX coating lowered the ESPA3 rejection of NDMA by 11% but increased the LFC3 and BW30 rejection by 6% and 15%, respectively. Artificially fouling ESPA3 membrane coupons with 170g/m(2) alginate decreased the rejection of NDMA by 18%. A feed concentration of 100mM NaCl decreased rejection of NDMA by 15% and acidifying the DI water feed to pH=3 decreased the rejection by 5%, whereas increasing the pH to 10 did not have a significant (p<0.05) effect.
-
photochemical attenuation of n nitrosodimethylamine ndma and other nitrosamines in surface water
Environmental Science & Technology, 2007Co-Authors: Megan H Plumlee, Martin ReinhardAbstract:The aqueous photolysis of seven alkyl nitrosamines was studied by irradiation in a solar simulator. Nitrosamines included N-Nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosodi-n-butylamine (NDBA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr). Direct photolysis at irradiations of 765 W/m2, representing Southern California midsummer, midday sun, resulted in half-lives of 16 min for NDMA and 12−15 min for the other nitrosamines. The quantum yield for NDMA was determined to be Φ = 0.41 and Φ = 0.43−0.61 for the other nitrosamines. Quantified products of NDMA photolysis included methylamine, dimethylamine, nitrite, nitrate, and formate, with nitrogen and carbon balances exceeding 98 and 79%, respectively. Indirect photolysis of nitrosamines in surface water was not observed; increasing dissolved organic carbon (DOC) slowed the NDMA photolysis rate because of light screening. Removal of NDMA measured in tertiar...
Wanfeng Wang - One of the best experts on this subject based on the ideXlab platform.
-
occurrence and profiling of multiple nitrosamines in source water and drinking water of china
Science of The Total Environment, 2016Co-Authors: Wanfeng Wang, Jianwei Yu, Wei An, Min YangAbstract:Abstract The occurrence of multiple nitrosamines was investigated in 54 drinking water treatment plants (DWTPs) from 30 cities across major watersheds of China, and the formation potential (FP) and cancer risk of the dominant nitrosamines were studied for profiling purposes. The results showed that N-Nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA) and N-nitrosodi-n-butylamine (NDBA) were the most abundant in DWTPs, and the concentrations in source water and finished water samples were not detected (ND) − 53.6 ng/L (NDMA), ND − 68.5 ng/L (NDEA), ND − 48.2 ng/L (NDBA). The frequencies of detection in source waters were 64.8%, 61.1% and 51.8%, and 57.4%, 53.7%, and 37% for finished waters, respectively. Further study indicated that the FPs of the three main nitrosamines during chloramination were higher than those during chlorination and in drinking water. The results of Principal Components Analysis (PCA) showed that ammonia was the most closely associated factor in nitrosamine formation in the investigated source water; however, there was no significant correlation between nitrosamine-FPs and the values of dominant water-quality parameters. The advanced treatment units (i.e., ozonation and biological activated carbon) used in DWTPs were able to control the nitrosamine-FPs effectively after disinfection. The target pollutants posed median and maximum cancer risks of 2.99 × 10− 5 and 35.5 × 10− 5 to the local populations due to their occurrence in drinking water.
-
occurrence of nine nitrosamines and secondary amines in source water and drinking water potential of secondary amines as nitrosamine precursors
Water Research, 2011Co-Authors: Wanfeng Wang, Jianying Hu, Jianwei Yu, Wei An, Haifeng Zhang, Min YangAbstract:Abstract Due to their high carcinogenicity, the control of nitrosamines, a group of disinfection by-products (DBPs), is an important issue for drinking water supplies. In this study, a method using ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry was improved for simultaneously analyzing nine nitrosamines in source water and finished water samples of twelve drinking water treatment plants (DWTPs) in China. The method detection limits of the nine target analytes were 0.2–0.9 ng/L for the source water samples and 0.1–0.7 ng/L for the finished water samples. Of the nine nitrosamines, six (N-Nitrosodimethylamine (NDMA), nitrosodiethylamine (NDEA), N-nitrosomorpholine (NMor), N-nitrosodi-n-butylamine (NDBA), N-nitrosomethylethylamine (NMEA), and N-nitrosodiphenylamine (NDPhA)) were detected. The total nitrosamine concentrations in source water and finished water samples were no detection-42.4 ng/L and no detection-26.3 ng/L, respectively, and NDMA (no detection-13.9 ng/L and no detection-20.5 ng/L, respectively) and NDEA (no detection-16.3 ng/L and no detection-14.0 ng/L, respectively) were the most abundant. Meanwhile, the occurrence of nine secondary amines corresponding to the nine nitrosamines was also investigated. All of them except for di-n-propylamine were detected in some source water and finished water samples, and dimethylamine (no detection-3.9 μg/L and no detection-4.0 μg/L, respectively) and diethylamine (no detection-2.4 μg/L and no detection-1.8 μg/L, respectively) were the most abundant ones. Controlled experiments involving chloramination of four secondary amines confirmed that dimethylamine, diethylamine, morpholine and di-n-butylamine in water can form the corresponding nitrosamines, with diethylamine and morpholine showing significantly higher yields than dimethylamine which has already been identified as a precursor of NDMA. This study proved that diethylamine, morpholine and di-n-butylamine detected in raw water would be one of the important the precursors of NDEA, NMOR and NDBA, respectively, in drinking water.