Nanoroughness

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 648 Experts worldwide ranked by ideXlab platform

Claudia Ludecke - One of the best experts on this subject based on the ideXlab platform.

  • reproducible biofilm cultivation of chemostat grown escherichia coli and investigation of bacterial adhesion on biomaterials using a non constant depth film fermenter
    PLOS ONE, 2014
    Co-Authors: Claudia Ludecke, Klaus D Jandt, Daniel Siegismund, Marian J Kujau, Emerson Zang, Markus Rettenmayr, Jorg Bossert, Martin Roth
    Abstract:

    Biomaterials-associated infections are primarily initiated by the adhesion of microorganisms on the biomaterial surfaces and subsequent biofilm formation. Understanding the fundamental microbial adhesion mechanisms and biofilm development is crucial for developing strategies to prevent such infections. Suitable in vitro systems for biofilm cultivation and bacterial adhesion at controllable, constant and reproducible conditions are indispensable. This study aimed (i) to modify the previously described constant-depth film fermenter for the reproducible cultivation of biofilms at non-depth-restricted, constant and low shear conditions and (ii) to use this system to elucidate bacterial adhesion kinetics on different biomaterials, focusing on biomaterials surface Nanoroughness and hydrophobicity. Chemostat-grown Escherichia coli were used for biofilm cultivation on titanium oxide and investigating bacterial adhesion over time on titanium oxide, poly(styrene), poly(tetrafluoroethylene) and glass. Using chemostat-grown microbial cells (single-species continuous culture) minimized variations between the biofilms cultivated during different experimental runs. Bacterial adhesion on biomaterials comprised an initial lag-phase I followed by a fast adhesion phase II and a phase of saturation III. With increasing biomaterials surface Nanoroughness and increasing hydrophobicity, adhesion rates increased during phases I and II. The influence of materials surface hydrophobicity seemed to exceed that of Nanoroughness during the lag-phase I, whereas it was vice versa during adhesion phase II. This study introduces the non-constant-depth film fermenter in combination with a chemostat culture to allow for a controlled approach to reproducibly cultivate biofilms and to investigate bacterial adhesion kinetics at constant and low shear conditions. The findings will support developing and adequate testing of biomaterials surface modifications eventually preventing biomaterial-associated infections.

  • physical vapor deposited titanium thin films for biomedical applications reproducibility of nanoscale surface roughness and microbial adhesion properties
    Applied Surface Science, 2013
    Co-Authors: Claudia Ludecke, Jorg Bossert, Martin Roth, Klaus D Jandt
    Abstract:

    Abstract The surface topography is of great importance for the biological performance of titanium based implants since it may influence the initial adsorption of proteins, cell response, as well as microbial adhesion. A recently described technique for the preparation of titanium thin films with an adjustable surface roughness on the nanometer scale is the physical vapor deposition (PVD). The aims of this study were to statistically evaluate the reproducibility of nanorough titanium thin films prepared by PVD using an atomic force microscopy (AFM) based approach, to test the microbial adhesion in dependence of the nanoscale surface roughness and to critically discuss the parameters used for the characterization of the titanium surfaces with respect to AFM microscope settings. No statistically significant differences were found between the surface Nanoroughnesses of the PVD prepared titanium thin films. With increasing surface Nanoroughness, the coverage by Escherichia coli decreased and the microbial cells were increasingly patchy distributed. The calculated roughness values significantly increased with increasing AFM scan size, while image resolution and pixel density had no influence on this effect. Our study shows that PVD is a suitable tool to reproducibly prepare titanium thin films with a well-defined surface topography on the nanometer scale. These surfaces are, thus, a suitable 2D model system for studies addressing the interaction between surface Nanoroughness and the biological system. First results show that surface roughness even on the very low nanometer scale has an influence on bacterial adhesion behavior. These findings give new momentum to biomaterials research and will support the development of biomaterials surfaces with anti-infectious surface properties.

Martin Roth - One of the best experts on this subject based on the ideXlab platform.

  • Reproducible Biofilm Cultivation of Chemostat-Grown Escherichia coli and Investigation of Bacterial Adhesion on Biomaterials Using a Non-Constant-Depth Film
    2016
    Co-Authors: Klaus D. J, Daniel Siegismund, Marian J Kujau, Emerson Zang, Markus Rettenmayr, Martin Roth
    Abstract:

    Biomaterials-associated infections are primarily initiated by the adhesion of microorganisms on the biomaterial surfaces and subsequent biofilm formation. Understanding the fundamental microbial adhesion mechanisms and biofilm development is crucial for developing strategies to prevent such infections. Suitable in vitro systems for biofilm cultivation and bacterial adhesion at controllable, constant and reproducible conditions are indispensable. This study aimed (i) to modify the previously described constant-depth film fermenter for the reproducible cultivation of biofilms at non-depth-restricted, constant and low shear conditions and (ii) to use this system to elucidate bacterial adhesion kinetics on different biomaterials, focusing on biomaterials surface Nanoroughness and hydrophobicity. Chemostat-grown Escherichia coli were used for biofilm cultivation on titanium oxide and investigating bacterial adhesion over time on titanium oxide, poly(styrene), poly(tetrafluoroethylene) and glass. Using chemostat-grown microbial cells (single-species continuous culture) minimized variations between the biofilms cultivated during different experimental runs. Bacterial adhesion on biomaterials comprised an initial lag-phase I followed by a fast adhesion phase II and a phase of saturation III. With increasing biomaterials surface Nanoroughness and increasing hydrophobicity, adhesion rates increased during phases I and II. The influence of materials surface hydrophobicity seemed to exceed that of Nanoroughness during the lag-phase I, whereas it was vice versa during adhesion phase II. This study introduces the non-constant-depth film fermenter i

  • reproducible biofilm cultivation of chemostat grown escherichia coli and investigation of bacterial adhesion on biomaterials using a non constant depth film fermenter
    PLOS ONE, 2014
    Co-Authors: Claudia Ludecke, Klaus D Jandt, Daniel Siegismund, Marian J Kujau, Emerson Zang, Markus Rettenmayr, Jorg Bossert, Martin Roth
    Abstract:

    Biomaterials-associated infections are primarily initiated by the adhesion of microorganisms on the biomaterial surfaces and subsequent biofilm formation. Understanding the fundamental microbial adhesion mechanisms and biofilm development is crucial for developing strategies to prevent such infections. Suitable in vitro systems for biofilm cultivation and bacterial adhesion at controllable, constant and reproducible conditions are indispensable. This study aimed (i) to modify the previously described constant-depth film fermenter for the reproducible cultivation of biofilms at non-depth-restricted, constant and low shear conditions and (ii) to use this system to elucidate bacterial adhesion kinetics on different biomaterials, focusing on biomaterials surface Nanoroughness and hydrophobicity. Chemostat-grown Escherichia coli were used for biofilm cultivation on titanium oxide and investigating bacterial adhesion over time on titanium oxide, poly(styrene), poly(tetrafluoroethylene) and glass. Using chemostat-grown microbial cells (single-species continuous culture) minimized variations between the biofilms cultivated during different experimental runs. Bacterial adhesion on biomaterials comprised an initial lag-phase I followed by a fast adhesion phase II and a phase of saturation III. With increasing biomaterials surface Nanoroughness and increasing hydrophobicity, adhesion rates increased during phases I and II. The influence of materials surface hydrophobicity seemed to exceed that of Nanoroughness during the lag-phase I, whereas it was vice versa during adhesion phase II. This study introduces the non-constant-depth film fermenter in combination with a chemostat culture to allow for a controlled approach to reproducibly cultivate biofilms and to investigate bacterial adhesion kinetics at constant and low shear conditions. The findings will support developing and adequate testing of biomaterials surface modifications eventually preventing biomaterial-associated infections.

  • physical vapor deposited titanium thin films for biomedical applications reproducibility of nanoscale surface roughness and microbial adhesion properties
    Applied Surface Science, 2013
    Co-Authors: Claudia Ludecke, Jorg Bossert, Martin Roth, Klaus D Jandt
    Abstract:

    Abstract The surface topography is of great importance for the biological performance of titanium based implants since it may influence the initial adsorption of proteins, cell response, as well as microbial adhesion. A recently described technique for the preparation of titanium thin films with an adjustable surface roughness on the nanometer scale is the physical vapor deposition (PVD). The aims of this study were to statistically evaluate the reproducibility of nanorough titanium thin films prepared by PVD using an atomic force microscopy (AFM) based approach, to test the microbial adhesion in dependence of the nanoscale surface roughness and to critically discuss the parameters used for the characterization of the titanium surfaces with respect to AFM microscope settings. No statistically significant differences were found between the surface Nanoroughnesses of the PVD prepared titanium thin films. With increasing surface Nanoroughness, the coverage by Escherichia coli decreased and the microbial cells were increasingly patchy distributed. The calculated roughness values significantly increased with increasing AFM scan size, while image resolution and pixel density had no influence on this effect. Our study shows that PVD is a suitable tool to reproducibly prepare titanium thin films with a well-defined surface topography on the nanometer scale. These surfaces are, thus, a suitable 2D model system for studies addressing the interaction between surface Nanoroughness and the biological system. First results show that surface roughness even on the very low nanometer scale has an influence on bacterial adhesion behavior. These findings give new momentum to biomaterials research and will support the development of biomaterials surfaces with anti-infectious surface properties.

Terry W. J. Steele - One of the best experts on this subject based on the ideXlab platform.

  • Poly(methyl methacrylate) Surface Modification for Surfactant-Free Real-Time Toxicity Assay on Droplet Microfluidic Platform.
    ACS applied materials & interfaces, 2017
    Co-Authors: Raphael Ortiz, Jian Lin Chen, David C. Stuckey, Terry W. J. Steele
    Abstract:

    Microfluidic droplet reactors have many potential uses, from analytical to synthesis. Stable operation requires preferential wetting of the channel surface by the continuous phase which is often not fulfilled by materials commonly used for lab-on-chip devices. Here we show that a silica nanoparticle (SiNP) layer coated onto a Poly(methyl methacrylate) (PMMA) and other thermoplastics surface enhances its wetting properties by creating Nanoroughness, and allows simple grafting of hydrocarbon chains through silane chemistry. Using the unusual stability of silica sols at their isoelectric point, a dense SiNP layer is adsorbed onto PMMA and renders the surface superhydrophilic. Subsequently, a self-assembled dodecyltrichlorosilane (DTS) monolayer yields a superhydrophobic surface that allows the repeatable generation of aqueous droplets in a hexadecane continuous phase without surfactant addition. A SiNP-DTS modified chip has been used to monitor bacterial viability with a resazurin assay. The whole process in...

  • Poly(methyl methacrylate) Surface Modification for Surfactant-Free Real-Time Toxicity Assay on Droplet Microfluidic Platform
    2017
    Co-Authors: Raphael Ortiz, Jian Lin Chen, David C. Stuckey, Terry W. J. Steele
    Abstract:

    Microfluidic droplet reactors have many potential uses, from analytical to synthesis. Stable operation requires preferential wetting of the channel surface by the continuous phase which is often not fulfilled by materials commonly used for lab-on-chip devices. Here we show that a silica nanoparticle (SiNP) layer coated onto a Poly­(methyl methacrylate) (PMMA) and other thermoplastics surface enhances its wetting properties by creating Nanoroughness, and allows simple grafting of hydrocarbon chains through silane chemistry. Using the unusual stability of silica sols at their isoelectric point, a dense SiNP layer is adsorbed onto PMMA and renders the surface superhydrophilic. Subsequently, a self-assembled dodecyltrichlorosilane (DTS) monolayer yields a superhydrophobic surface that allows the repeatable generation of aqueous droplets in a hexadecane continuous phase without surfactant addition. A SiNP-DTS modified chip has been used to monitor bacterial viability with a resazurin assay. The whole process involving sequential reagents injection, and multiplexed droplet fluorescence intensity monitoring is carried out on chip. Metabolic inhibition of the anaerobe Enterococcus faecalis by 30 mg L–1 of NiCl2 was detected in 5 min

Lorenzo Moroni - One of the best experts on this subject based on the ideXlab platform.

  • Nanoroughness surface chemistry and drug delivery control by atmospheric plasma jet on implantable devices
    ACS Applied Materials & Interfaces, 2018
    Co-Authors: Alessandro Patelli, Federico Mussano, Paola Brun, Tullio Genova, Emmanuele Ambrosi, Niccolo Michieli, G Mattei, Paolo Scopece, Lorenzo Moroni
    Abstract:

    Implantable devices need specific tailored surface morphologies and chemistries to interact with the living systems or to actively induce a biological response also by the release of drugs or proteins. These customized requirements foster technologies that can be implemented in additive manufacturing systems. Here, we present a novel approach based on spraying processes that allow to control separately topographic features in the submicron range (∼60 nm to 2 μm), ammine or carboxylic chemistry, and fluorophore release even on temperature-sensitive biodegradable polymers such as polycaprolactone (PCL). We developed a two-steps process with a first deposition of 220 nm silica and poly(lactic- co-glycolide) (PLGA) fluorescent nanoparticles by aerosol followed by the deposition of a fixing layer by an atmospheric pressure plasma jet (APPJ). The nanoparticles can be used to create the Nanoroughness and to include active molecule release, while the capping layer ensures stability and the chemical functionalities. The process is enabled by a novel APPJ which allows deposition rates of 10-20 nm·s-1 at temperatures lower than 50 °C using argon as the process gas. This approach was assessed on titanium alloys for dental implants and on PCL films. The surfaces were characterized by Fourier transform infrared, atomic force microscopy, and scanning electron microscopy (SEM). Titanium alloys were tested with the preosteoblast murine cells line, while the PCL film was tested with fibroblasts. Cell behavior was evaluated by viability and adhesion assays, protein adsorption, cell proliferation, focal adhesion formation, and SEM. The release of a fluorophore molecule was assessed in the cell growing media, simulating a drug release. Osteoblast adhesion on the plasma-treated materials increased by 20% with respect to commercial titanium alloy implants. Fibroblast adhesion increased by a 100% compared to smooth PCL substrates. The release of the fluorophore by the dissolution of the PLGA nanoparticles was verified, and the integrity of the encapsulated drug model was confirmed.

  • Nanoroughness, Surface Chemistry, and Drug Delivery Control by Atmospheric Plasma Jet on Implantable Devices
    2018
    Co-Authors: Alessandro Patelli, Federico Mussano, Paola Brun, Tullio Genova, Emmanuele Ambrosi, Niccolo Michieli, G Mattei, Paolo Scopece, Lorenzo Moroni
    Abstract:

    Implantable devices need specific tailored surface morphologies and chemistries to interact with the living systems or to actively induce a biological response also by the release of drugs or proteins. These customized requirements foster technologies that can be implemented in additive manufacturing systems. Here, we present a novel approach based on spraying processes that allow to control separately topographic features in the submicron range (∼60 nm to 2 μm), ammine or carboxylic chemistry, and fluorophore release even on temperature-sensitive biodegradable polymers such as polycaprolactone (PCL). We developed a two-steps process with a first deposition of 220 nm silica and poly­(lactic-co-glycolide) (PLGA) fluorescent nanoparticles by aerosol followed by the deposition of a fixing layer by an atmospheric pressure plasma jet (APPJ). The nanoparticles can be used to create the Nanoroughness and to include active molecule release, while the capping layer ensures stability and the chemical functionalities. The process is enabled by a novel APPJ which allows deposition rates of 10–20 nm·s–1 at temperatures lower than 50 °C using argon as the process gas. This approach was assessed on titanium alloys for dental implants and on PCL films. The surfaces were characterized by Fourier transform infrared, atomic force microscopy, and scanning electron microscopy (SEM). Titanium alloys were tested with the preosteoblast murine cells line, while the PCL film was tested with fibroblasts. Cell behavior was evaluated by viability and adhesion assays, protein adsorption, cell proliferation, focal adhesion formation, and SEM. The release of a fluorophore molecule was assessed in the cell growing media, simulating a drug release. Osteoblast adhesion on the plasma-treated materials increased by 20% with respect to commercial titanium alloy implants. Fibroblast adhesion increased by a 100% compared to smooth PCL substrates. The release of the fluorophore by the dissolution of the PLGA nanoparticles was verified, and the integrity of the encapsulated drug model was confirmed

  • Tailoring surface Nanoroughness of electrospun scaffolds for skeletal tissue engineering.
    Acta biomaterialia, 2017
    Co-Authors: Honglin Chen, Xiaobin Huang, Minmin Zhang, Febriyani Damanik, Matt Baker, Anne Marijke Leferink, Huipin Yuan, Roman Truckenmüller, Clemens Van Blitterswijk, Lorenzo Moroni
    Abstract:

    Abstract Electrospun scaffolds provide a promising approach for tissue engineering as they mimic the physical properties of extracellular matrix. Previous studies have demonstrated that electrospun scaffolds with porous features on the surface of single fibers, enhanced cellular attachment and proliferation. Yet, little is known about the effect of such topographical cues on cellular differentiation. Here, we aimed at investigating the influence of surface roughness of electrospun scaffolds on skeletal differentiation of human mesenchymal stromal cells (hMSCs). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis showed that the surface Nanoroughness of fibers was successfully regulated via humidity control of the electrospinning environment. Gene expression analysis revealed that a higher surface roughness (roughness average (Ra) = 71.0 ± 11.0 nm) supported more induction of osteogenic genes such as osteopontin (OPN), bone morphogenetic protein 2 (BMP2), and runt-related transcription factor 2 (RUNX2), while a lower surface roughness (Ra = 14.3 ± 2.5 nm) demonstrated higher expression of other osteogenic genes including bone sialoprotein (BSP), collagen type I (COL1A1) and osteocalcin (OCN). Interestingly, a lower surface roughness (Ra = 14.3 ± 2.5 nm) better supported chondrogenic gene expression of hMSCs at day 7 compared to higher surface roughness (Ra = 71.0 ± 11.0 nm). Taken together, modulating surface roughness of 3D scaffolds appears to be a significant factor in scaffold design for the control of skeletal differentiation of hMSCs. Statement of Significance Tissue engineering scaffolds having specific topographical cues offer exciting possibilities for stimulating cells differentiation and growth of new tissue. Although electrospun scaffolds have been extensively investigated in tissue engineering and regenerative medicine, little is known about the influence of introducing Nanoroughness on their surface for cellular differentiation. The present study provides a method to engineer electrospun scaffolds with tailoring surface Nanoroughness and investigates the effect of such topographical cues on the process of human mesenchymal stromal cells differentiation into osteoblasts and chondrocytes linages. This strategy may help the design of nanostructured scaffolds for skeletal tissue engineering.

  • Flexible Yttrium-Stabilized Zirconia Nanofibers Offer Bioactive Cues for Osteogenic Differentiation of Human Mesenchymal Stromal Cells
    2016
    Co-Authors: Gerard Cadafalch Gazquez, Honglin Chen, Sjoerd A. Veldhuis, Alim Solmaz, Carlos Mota, Bernard A. Boukamp, Clemens A. Van Blitterswijk, Johan Ten E. Elshof, Lorenzo Moroni
    Abstract:

    Currently, the main drawback of ceramic scaffolds used in hard tissue regeneration is their low mechanical strength. Stabilized zirconia, especially the tetragonal 3% yttrium-stabilized zirconia (YSZ) phase, has been considered as a bioinert ceramic material with high mechanical strength. In the present work, flexible nanofibrous YSZ scaffolds were prepared by electrospinning. The obtained scaffolds showed remarkable flexibility at the macroscopic scale, while retaining their stiffness at the microscopic scale. The surface Nanoroughness of the scaffolds could be tailored by varying the heat treatment method. Our results demonstrate that the osteogenic differentiation and mineralization of seeded human mesenchymal stromal cells were supported by the nanofibrous YSZ scaffolds, in contrast to the well-known bioinert behavior of bulk YSZ. These findings highlight that flexible ceramic scaffolds are an appealing alternative to the current brittle ceramics for bone tissue regeneration applications

Raphael Ortiz - One of the best experts on this subject based on the ideXlab platform.

  • Poly(methyl methacrylate) Surface Modification for Surfactant-Free Real-Time Toxicity Assay on Droplet Microfluidic Platform.
    ACS applied materials & interfaces, 2017
    Co-Authors: Raphael Ortiz, Jian Lin Chen, David C. Stuckey, Terry W. J. Steele
    Abstract:

    Microfluidic droplet reactors have many potential uses, from analytical to synthesis. Stable operation requires preferential wetting of the channel surface by the continuous phase which is often not fulfilled by materials commonly used for lab-on-chip devices. Here we show that a silica nanoparticle (SiNP) layer coated onto a Poly(methyl methacrylate) (PMMA) and other thermoplastics surface enhances its wetting properties by creating Nanoroughness, and allows simple grafting of hydrocarbon chains through silane chemistry. Using the unusual stability of silica sols at their isoelectric point, a dense SiNP layer is adsorbed onto PMMA and renders the surface superhydrophilic. Subsequently, a self-assembled dodecyltrichlorosilane (DTS) monolayer yields a superhydrophobic surface that allows the repeatable generation of aqueous droplets in a hexadecane continuous phase without surfactant addition. A SiNP-DTS modified chip has been used to monitor bacterial viability with a resazurin assay. The whole process in...

  • Poly(methyl methacrylate) Surface Modification for Surfactant-Free Real-Time Toxicity Assay on Droplet Microfluidic Platform
    2017
    Co-Authors: Raphael Ortiz, Jian Lin Chen, David C. Stuckey, Terry W. J. Steele
    Abstract:

    Microfluidic droplet reactors have many potential uses, from analytical to synthesis. Stable operation requires preferential wetting of the channel surface by the continuous phase which is often not fulfilled by materials commonly used for lab-on-chip devices. Here we show that a silica nanoparticle (SiNP) layer coated onto a Poly­(methyl methacrylate) (PMMA) and other thermoplastics surface enhances its wetting properties by creating Nanoroughness, and allows simple grafting of hydrocarbon chains through silane chemistry. Using the unusual stability of silica sols at their isoelectric point, a dense SiNP layer is adsorbed onto PMMA and renders the surface superhydrophilic. Subsequently, a self-assembled dodecyltrichlorosilane (DTS) monolayer yields a superhydrophobic surface that allows the repeatable generation of aqueous droplets in a hexadecane continuous phase without surfactant addition. A SiNP-DTS modified chip has been used to monitor bacterial viability with a resazurin assay. The whole process involving sequential reagents injection, and multiplexed droplet fluorescence intensity monitoring is carried out on chip. Metabolic inhibition of the anaerobe Enterococcus faecalis by 30 mg L–1 of NiCl2 was detected in 5 min