Neotropics

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 14091 Experts worldwide ranked by ideXlab platform

D. Begerow - One of the best experts on this subject based on the ideXlab platform.

M Hughes - One of the best experts on this subject based on the ideXlab platform.

  • continental scale diversification patterns in a megadiverse genus the biogeography of neotropical begonia
    Journal of Biogeography, 2015
    Co-Authors: Peter W Moonlight, James E Richardson, Mark C Tebbitt, Daniel C Thomas, Ruth Hollands, Chingi Peng, M Hughes
    Abstract:

    Aim The origin of Neotropical hyperdiversity is one of the most intriguing questions in modern biogeography and is best answered through the investigation of large, pantropically distributed genera, allowing the comparison of closely related clades in different regions. We produced a dated phylogeny and reconstructed ancestral ranges of the megadiverse, Andean-centred genus Begonia to discern its dispersal history throughout the Neotropics and correlates of range evolution. Neotropical and Palaeotropical diversification rates were estimated. Location Neotropics: Central America, South America, West Indies and Mexico. Methods Plastid DNA sequence data from species representing the full geographical range and majority of sections of Neotropical Begonia were analysed with a secondarily calibrated relaxed molecular clock in order to estimate the age of crown groups and divergence times within Neotropical Begonia. Ancestral areas were reconstructed with a Bayesian approach to dispersal–vicariance analysis, a likelihood framework under a dispersal–extinction–cladogenesis model, and a Bayesian binary method. Diversification rates were estimated under a Bayesian framework. Results Biogeographical reconstruction indicated two independent trans-Atlantic colonizations of the Neotropics from Africa. Early-diverging lineages of both clades are reconstructed as having diversified in the mid-Miocene, with multiple dispersal events between the Brazilian Atlantic rain forest and the Andes, and single radiations within the West Indies and Central America plus Mexico. Main conclusions Begonia displays numerous radiations within regions, punctuated by long-distance dispersal. Successful colonization and diversification is predicted by the presence of upland habitat. Recognizing the role of chance dispersal events between available habitats is vital for understanding the formation of current biogeographical patterns.

James E Richardson - One of the best experts on this subject based on the ideXlab platform.

  • continental scale diversification patterns in a megadiverse genus the biogeography of neotropical begonia
    Journal of Biogeography, 2015
    Co-Authors: Peter W Moonlight, James E Richardson, Mark C Tebbitt, Daniel C Thomas, Ruth Hollands, Chingi Peng, M Hughes
    Abstract:

    Aim The origin of Neotropical hyperdiversity is one of the most intriguing questions in modern biogeography and is best answered through the investigation of large, pantropically distributed genera, allowing the comparison of closely related clades in different regions. We produced a dated phylogeny and reconstructed ancestral ranges of the megadiverse, Andean-centred genus Begonia to discern its dispersal history throughout the Neotropics and correlates of range evolution. Neotropical and Palaeotropical diversification rates were estimated. Location Neotropics: Central America, South America, West Indies and Mexico. Methods Plastid DNA sequence data from species representing the full geographical range and majority of sections of Neotropical Begonia were analysed with a secondarily calibrated relaxed molecular clock in order to estimate the age of crown groups and divergence times within Neotropical Begonia. Ancestral areas were reconstructed with a Bayesian approach to dispersal–vicariance analysis, a likelihood framework under a dispersal–extinction–cladogenesis model, and a Bayesian binary method. Diversification rates were estimated under a Bayesian framework. Results Biogeographical reconstruction indicated two independent trans-Atlantic colonizations of the Neotropics from Africa. Early-diverging lineages of both clades are reconstructed as having diversified in the mid-Miocene, with multiple dispersal events between the Brazilian Atlantic rain forest and the Andes, and single radiations within the West Indies and Central America plus Mexico. Main conclusions Begonia displays numerous radiations within regions, punctuated by long-distance dispersal. Successful colonization and diversification is predicted by the presence of upland habitat. Recognizing the role of chance dispersal events between available habitats is vital for understanding the formation of current biogeographical patterns.

Germinal Rouhan - One of the best experts on this subject based on the ideXlab platform.

  • new insights into the phylogeny and historical biogeography of the lellingeria myosuroides clade polypodiaceae
    PLOS Currents, 2010
    Co-Authors: Tom A Ranker, Michael A Sundue, Paulo H Labiak, Barbara S Parris, Germinal Rouhan
    Abstract:

    Grammitid ferns are a well-supported clade of ~900 primarily tropical epiphytic species. Recent phylogenetic studies have found support for a distinctive, geographically diverse group of 24 species referred to as the Lellingeria myosuroides clade and have provided evidence for a variety of phylogenetic relationships within the group, as well as hypotheses of historical processes that have produced current biogeographical patterns. We present new data and analyses that support the following primary conclusions: 1) the L. myosuroides clade is monophyletic and pantropical; 2) that clade is sister to a more species rich clade of entirely Neotropical species (Lellingeria s.s.); 3) we infer two independent dispersal events from the Neotropics to Pacific islands, five independent dispersal events from the Neotropics to the Paleotropics, and two separate dispersal events from mainland tropical America to the West Indies.

Reinhard Berndt - One of the best experts on this subject based on the ideXlab platform.

  • species richness taxonomy and peculiarities of the neotropical rust fungi are they more diverse in the Neotropics
    Biodiversity and Conservation, 2012
    Co-Authors: Reinhard Berndt
    Abstract:

    The species richness of rust fungi (Pucciniales or Uredinales) in the Neotropics is reviewed. Species numbers are presented for all neotropical countries and rust-plant-ratios calculated. It is discussed whether the ratio for a given region can be explained by the species richness of vascular plants alone or whether it is caused by additional factors. In the first case, ratios should apply globally and vary only slightly; in the second case, more diverging ratios are expected. Observed ratios ranged between 1:16 and 1:124 in the Neotropics. The large differences are certainly influenced by unequal levels of investigation, rendering interpretation difficult. Differences seem also to be influenced by the taxonomic composition of floras regarding the percentage of host families or genera bearing different numbers of rust species. This indicates that rust species richness is not driven solely by plant species richness. Ratios calculated for Switzerland, Austria and Japan are distinctly higher than for the Neotropics indicating that certain temperate regions are proportionally richer in rust fungi than the Neotropics. Uredinial states and short-cycled rust species prevail in the Neotropics. The preponderance of uredinial states may be due to the heterogeneous spatial composition of certain vegetation types in the wet tropics. Short-cycled rusts may be adapted to a pronounced seasonality that can be encountered in many drier neotropical biomes. Future research needs to fill our knowledge gaps on the taxonomy and ecology of neotropical rust fungi are discussed.