Nonzero Weight

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 141 Experts worldwide ranked by ideXlab platform

Vsevolod Gubarev - One of the best experts on this subject based on the ideXlab platform.

Cunsheng Ding - One of the best experts on this subject based on the ideXlab platform.

  • the projective general linear group mathrm pgl _2 mathrm gf 2 m and linear codes of length 2 m 1
    arXiv: Information Theory, 2020
    Co-Authors: Cunsheng Ding, Chunming Tang, Vladimir D Tonchev
    Abstract:

    The projective general linear group $\mathrm{PGL}_2(\mathrm{GF}(2^m))$ acts as a $3$-transitive permutation group on the set of points of the projective line. The first objective of this paper is to prove that all linear codes over $\mathrm{GF}(2^h)$ that are invariant under $\mathrm{PGL}_2(\mathrm{GF}(2^m))$ are trivial codes: the repetition code, the whole space $\mathrm{GF}(2^h)^{2^m+1}$, and their dual codes. As an application of this result, the $2$-ranks of the (0,1)-incidence matrices of all $3$-$(q+1,k,\lambda)$ designs that are invariant under $\mathrm{PGL}_2(\mathrm{GF}(2^m))$ are determined. The second objective is to present two infinite families of cyclic codes over $\mathrm{GF}(2^m)$ such that the set of the supports of all codewords of any fixed Nonzero Weight is invariant under $\mathrm{PGL}_2(\mathrm{GF}(2^m))$, therefore, the codewords of any Nonzero Weight support a 3-design. A code from the first family has parameters $[q+1,q-3,4]_q$, where $q=2^m$, and $m\ge 4$ is even. The exact number of the codewords of minimum Weight is determined, and the codewords of minimum Weight support a 3-$(q+1,4,2)$ design. A code from the second family has parameters $[q+1,4,q-4]_q$, $q=2^m$, $m\ge 4$ even, and the minimum Weight codewords support a 3-$(q +1,q-4,(q-4)(q-5)(q-6)/60)$ design, whose complementary 3-$(q +1, 5, 1)$ design is isomorphic to the Witt spherical geometry with these parameters. A lower bound on the dimension of a linear code over $\mathrm{GF}(q)$ that can support a 3-$(q +1,q-4,(q-4)(q-5)(q-6)/60)$ design is proved, and it is shown that the designs supported by the codewords of minimum Weight in the codes from the second family of codes meet this bound.

  • The Projective General Linear Group $\mathrm{PGL}_2(\mathrm{GF}(2^m))$ and Linear Codes of Length $2^m+1$.
    arXiv: Information Theory, 2020
    Co-Authors: Cunsheng Ding, Chunming Tang, Vladimir D Tonchev
    Abstract:

    The projective general linear group $\mathrm{PGL}_2(\mathrm{GF}(2^m))$ acts as a $3$-transitive permutation group on the set of points of the projective line. The first objective of this paper is to prove that all linear codes over $\mathrm{GF}(2^h)$ that are invariant under $\mathrm{PGL}_2(\mathrm{GF}(2^m))$ are trivial codes: the repetition code, the whole space $\mathrm{GF}(2^h)^{2^m+1}$, and their dual codes. As an application of this result, the $2$-ranks of the (0,1)-incidence matrices of all $3$-$(q+1,k,\lambda)$ designs that are invariant under $\mathrm{PGL}_2(\mathrm{GF}(2^m))$ are determined. The second objective is to present two infinite families of cyclic codes over $\mathrm{GF}(2^m)$ such that the set of the supports of all codewords of any fixed Nonzero Weight is invariant under $\mathrm{PGL}_2(\mathrm{GF}(2^m))$, therefore, the codewords of any Nonzero Weight support a 3-design. A code from the first family has parameters $[q+1,q-3,4]_q$, where $q=2^m$, and $m\ge 4$ is even. The exact number of the codewords of minimum Weight is determined, and the codewords of minimum Weight support a 3-$(q+1,4,2)$ design. A code from the second family has parameters $[q+1,4,q-4]_q$, $q=2^m$, $m\ge 4$ even, and the minimum Weight codewords support a 3-$(q +1,q-4,(q-4)(q-5)(q-6)/60)$ design, whose complementary 3-$(q +1, 5, 1)$ design is isomorphic to the Witt spherical geometry with these parameters. A lower bound on the dimension of a linear code over $\mathrm{GF}(q)$ that can support a 3-$(q +1,q-4,(q-4)(q-5)(q-6)/60)$ design is proved, and it is shown that the designs supported by the codewords of minimum Weight in the codes from the second family of codes meet this bound.

  • Elementary 2-group character codes
    IEEE Transactions on Information Theory, 2000
    Co-Authors: Cunsheng Ding, David Kohel, San Ling
    Abstract:

    We describe a class of codes over GF(q), where q is a power of an odd prime. These codes are analogs of the binary Reed-Muller codes and share several features in common with them. We determine the minimum Weight and properties of these codes. For a subclass of codes we find the Weight distribution and prove that the minimum Nonzero Weight codewords give 1-designs.

Gubarev Vsevolod - One of the best experts on this subject based on the ideXlab platform.

Vladimir D Tonchev - One of the best experts on this subject based on the ideXlab platform.

  • the projective general linear group mathrm pgl _2 mathrm gf 2 m and linear codes of length 2 m 1
    arXiv: Information Theory, 2020
    Co-Authors: Cunsheng Ding, Chunming Tang, Vladimir D Tonchev
    Abstract:

    The projective general linear group $\mathrm{PGL}_2(\mathrm{GF}(2^m))$ acts as a $3$-transitive permutation group on the set of points of the projective line. The first objective of this paper is to prove that all linear codes over $\mathrm{GF}(2^h)$ that are invariant under $\mathrm{PGL}_2(\mathrm{GF}(2^m))$ are trivial codes: the repetition code, the whole space $\mathrm{GF}(2^h)^{2^m+1}$, and their dual codes. As an application of this result, the $2$-ranks of the (0,1)-incidence matrices of all $3$-$(q+1,k,\lambda)$ designs that are invariant under $\mathrm{PGL}_2(\mathrm{GF}(2^m))$ are determined. The second objective is to present two infinite families of cyclic codes over $\mathrm{GF}(2^m)$ such that the set of the supports of all codewords of any fixed Nonzero Weight is invariant under $\mathrm{PGL}_2(\mathrm{GF}(2^m))$, therefore, the codewords of any Nonzero Weight support a 3-design. A code from the first family has parameters $[q+1,q-3,4]_q$, where $q=2^m$, and $m\ge 4$ is even. The exact number of the codewords of minimum Weight is determined, and the codewords of minimum Weight support a 3-$(q+1,4,2)$ design. A code from the second family has parameters $[q+1,4,q-4]_q$, $q=2^m$, $m\ge 4$ even, and the minimum Weight codewords support a 3-$(q +1,q-4,(q-4)(q-5)(q-6)/60)$ design, whose complementary 3-$(q +1, 5, 1)$ design is isomorphic to the Witt spherical geometry with these parameters. A lower bound on the dimension of a linear code over $\mathrm{GF}(q)$ that can support a 3-$(q +1,q-4,(q-4)(q-5)(q-6)/60)$ design is proved, and it is shown that the designs supported by the codewords of minimum Weight in the codes from the second family of codes meet this bound.

  • The Projective General Linear Group $\mathrm{PGL}_2(\mathrm{GF}(2^m))$ and Linear Codes of Length $2^m+1$.
    arXiv: Information Theory, 2020
    Co-Authors: Cunsheng Ding, Chunming Tang, Vladimir D Tonchev
    Abstract:

    The projective general linear group $\mathrm{PGL}_2(\mathrm{GF}(2^m))$ acts as a $3$-transitive permutation group on the set of points of the projective line. The first objective of this paper is to prove that all linear codes over $\mathrm{GF}(2^h)$ that are invariant under $\mathrm{PGL}_2(\mathrm{GF}(2^m))$ are trivial codes: the repetition code, the whole space $\mathrm{GF}(2^h)^{2^m+1}$, and their dual codes. As an application of this result, the $2$-ranks of the (0,1)-incidence matrices of all $3$-$(q+1,k,\lambda)$ designs that are invariant under $\mathrm{PGL}_2(\mathrm{GF}(2^m))$ are determined. The second objective is to present two infinite families of cyclic codes over $\mathrm{GF}(2^m)$ such that the set of the supports of all codewords of any fixed Nonzero Weight is invariant under $\mathrm{PGL}_2(\mathrm{GF}(2^m))$, therefore, the codewords of any Nonzero Weight support a 3-design. A code from the first family has parameters $[q+1,q-3,4]_q$, where $q=2^m$, and $m\ge 4$ is even. The exact number of the codewords of minimum Weight is determined, and the codewords of minimum Weight support a 3-$(q+1,4,2)$ design. A code from the second family has parameters $[q+1,4,q-4]_q$, $q=2^m$, $m\ge 4$ even, and the minimum Weight codewords support a 3-$(q +1,q-4,(q-4)(q-5)(q-6)/60)$ design, whose complementary 3-$(q +1, 5, 1)$ design is isomorphic to the Witt spherical geometry with these parameters. A lower bound on the dimension of a linear code over $\mathrm{GF}(q)$ that can support a 3-$(q +1,q-4,(q-4)(q-5)(q-6)/60)$ design is proved, and it is shown that the designs supported by the codewords of minimum Weight in the codes from the second family of codes meet this bound.

Kaiming Zhao - One of the best experts on this subject based on the ideXlab platform.