NS5B

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 14194269 Experts worldwide ranked by ideXlab platform

Jens Bukh - One of the best experts on this subject based on the ideXlab platform.

  • hcv genotype 6a escape from and resistance to velpatasvir pibrentasvir and sofosbuvir in robust infectious cell culture models
    Gastroenterology, 2018
    Co-Authors: Long V Pham, Jannie Pedersen, Ulrik Fahnøe, Judith M Gottwein, Santseharay Ramirez, Yiping Li, Jens Bukh
    Abstract:

    Background & Aims Chronic liver diseases caused by hepatitis C virus (HCV) genotype 6 are prevalent in Asia, and millions of people require treatment with direct-acting antiviral regimens, such as NS5A inhibitor velpatasvir combined with the NS5B polymerase inhibitor sofosbuvir. We developed infectious cell culture models of HCV genotype 6a infection to study the effects of these inhibitors and the development of resistance. Methods The consensus sequences of strains HK2 (MG717925) and HK6a (MG717928), originating from serum of patients with chronic HCV infection, were determined by Sanger sequencing of genomes amplified by reverse-transcription polymerase chain reaction. In vitro noninfectious full-length clones of these 6a strains were subsequently adapted in Huh7.5 cells, primarily by using substitutions identified in JFH1-based Core-NS5A and Core-NS5B genotype 6a recombinants. We studied the efficacy of NS5A and NS5B inhibitors in concentration-response assays. We examined the effects of long-term culture of Huh7.5 cells incubated with velpatasvir and sofosbuvir singly or combined following infection with passaged full-length HK2 or HK6a recombinant viruses. Resistance-associated substitutions (RAS) were identified by Sanger and next-generation sequencing, and their effects on viral fitness and in drug susceptibility were determined in reverse-genetic experiments. Results Adapted full-length HCV genotype 6a recombinants HK2cc and HK6acc had fast propagation kinetics and high infectivity titers. Compared with an HCV genotype 1a recombinant, HCV genotype 6a recombinants of strains HK2 and HK6a were equally sensitive to daclatasvir, elbasvir, velpatasvir, pibrentasvir, and sofosbuvir, but less sensitive to ledipasvir, ombitasvir, and dasabuvir. Long-term exposure of HCV genotype 6a-infected Huh7.5 cells with a combination of velpatasvir and sofosbuvir resulted in clearance of the virus, but the virus escaped the effects of single inhibitors via emergence of the RAS L31V in NS5A (conferring resistance to velpatasvir) and S282T in NS5B (conferring resistance to sofosbuvir). Engineered recombinant genotype 6a viruses with single RAS mediated resistance to velpatasvir or sofosbuvir. HCV genotype 6a viruses with RAS NS5A-L31V or NS5B-S282T were however, able to propagate and escape in Huh7.5 cells exposed to the combination of velpatasvir and sofosbuvir. Further, HCV genotype 6a with NS5A-L31V was able to propagate and escape in the presence of pibrentasvir with emergence of NS5A-L28S, conferring a high level of resistance to this inhibitor. Conclusions Strains of HCV genotype 6a isolated from patients can be adapted to propagate in cultured cells, permitting studies of the complete life cycle for this important genotype. The combination of velpatasvir and sofosbuvir is required to block propagation of original HCV genotype 6a, which quickly becomes resistant to single inhibitors via the rapid emergence and persistence of RAS. These features of HCV genotype 6a could compromise treatment.

  • differential sensitivity of 5 utr ns5a recombinants of hepatitis c virus genotypes 1 6 to protease and ns5a inhibitors
    Gastroenterology, 2014
    Co-Authors: Yiping Li, Judith M Gottwein, Santseharay Ramirez, Daryl Humes, Sanne B. Jensen, Jens Bukh
    Abstract:

    Background & Aims Hepatitis C virus (HCV) therapy will benefit from the preclinical evaluation of direct-acting antiviral (DAA) agents in infectious culture systems that test the effects on different virus genotypes. We developed HCV recombinants comprising the 5′ untranslated region−NS5A (5-5A) from genotypes 1−6 and 2a(JFH1) NS5B-3′ untranslated region, and tested the effects of NS3 protease and NS5A inhibitors on these recombinants. Methods The HCV 5-5A recombinants with previously identified mutations in the NS3-helicase (F1464L), NS4A (A1672S), and NS5B (D2979G) were adapted and improved, by incorporating additional recovered mutations that increased their propagation in Huh7.5 cells. Concentration−response profiles were determined for each DAA agent in replicate infected Huh7.5 cells. Results Developed efficient 1a(H77), 1a(TN), 3a(S52), 4a(ED43), 5a(SA13), and 6a(HK6a) 5-5A recombinants did not require mutations after viral passage in the NS3 protease or NS5A domain-I regions targeted by the drugs. They were inhibited in a concentration-dependent manner by the NS3 protease inhibitors telaprevir, boceprevir, asunaprevir, simeprevir, vaniprevir, faldaprevir, and MK-5172 and by the NS5A inhibitor daclatasvir. The 1a(TN) 5-5A and JFH1-independent full-length viruses had similar levels of sensitivity to the DAA agents, validating the 5-5A recombinants as surrogates for full-length viruses in DAA testing. Compared with the 1a(TN) full-length virus, the 3a(S52) 5-5A recombinant was highly resistant to all protease inhibitors, and the 4a(ED43) recombinant was highly resistant to telaprevir and boceprevir, but most sensitive to other protease inhibitors. Compared with other protease inhibitors, MK-5172 had exceptional potency against all HCV genotypes. The NS5A inhibitor daclatasvir had the highest potency observed, but with genotype-dependent activity. Conclusions The mutations F1464L, A1672S, and D2979G permitted the development of efficient HCV recombinants comprising genotype-specific 5′ untranslated region−NS5A (5-5A), which include the natural NS3 protease and NS5A domain-I drug targets. The robust replication of adapted 5-5A recombinants allowed for direct comparison of NS3 protease and NS5A inhibitors against HCV strains of genotypes 1−6.

  • highly efficient full length hepatitis c virus genotype 1 strain tn infectious culture system
    Proceedings of the National Academy of Sciences of the United States of America, 2012
    Co-Authors: Judith M Gottwein, Santseharay Ramirez, Jens Bukh, Sanne B. Jensen, Robert H Purcell
    Abstract:

    Chronic infection with hepatitis C virus (HCV) is an important cause of end stage liver disease worldwide. In the United States, most HCV-related disease is associated with genotype 1 infection, which remains difficult to treat. Drug and vaccine development was hampered by inability to culture patient isolates representing HCV genotypes 1–7 and subtypes; only a recombinant 2a genome (strain JFH1) spontaneously replicated in vitro. Recently, we identified three mutations F1464L/A1672S/D2979G (LSG) in the nonstructural (NS) proteins, essential for development of full-length HCV 2a (J6) and 2b (J8) culture systems in Huh7.5 cells. Here, we developed a highly efficient genotype 1a (strain TN) full-length culture system. We initially found that the LSG substitutions conferred viability to an intergenotypic recombinant composed of TN 5′ untranslated region (5′UTR)-NS5A and JFH1 NS5B-3′UTR; recovered viruses acquired two adaptive mutations located in NS3 and NS4B. Introduction of these changes into a replication-deficient TN full-length genome, harboring LSG, permitted efficient HCV production. Additional identified NS4B and NS5B mutations fully adapted the TN full-length virus. Thus, a TN genome with 8 changes (designated TN cell-culture derived, TNcc) replicated efficiently and released infectious particles of ∼5 log10 focus-forming units per mL; passaged TNcc did not require additional changes. IFN-α and directly acting antivirals targeting the HCV protease, NS5A, and NS5B, each inhibited full-length TN infection dose-dependently. Given the unique importance of genotype 1 for pathogenesis, this infectious 1a culture system represents an important advance in HCV research. The approach used and the mutations identified might permit culture development for other HCV isolates, thus facilitating vaccine development and personalized treatment.

Charles M. Rice - One of the best experts on this subject based on the ideXlab platform.

  • molecular virology of hepatitis c virus an update with respect to potential antiviral targets
    Antiviral Therapy, 1998
    Co-Authors: Keril J Blight, Alexander A Kolykhalov, K E Reed, Eugene Agapov, Charles M. Rice
    Abstract:

    Hepatitis C virus (HCV), a positive-strand enveloped RNA virus, is a major cause of chronic liver disease worldwide. Cis-acting RNA elements and virus-encoded polypeptides required for HCV replication represent attractive targets for the development of antiviral therapies. Internal ribosome entry site-directed translation of HCV genome RNA produces a long polyprotein which is co- and post-translationally processed to yield at least 10 viral proteins. A host signal peptidase is responsible for maturation of the structural proteins located in the N-terminal one-third of the polyprotein. Thus far, four enzymatic activities encoded by the non-structural (NS) proteins have been reported. The NS2-3 region encodes an autoproteinase responsible for cleavage at the 2/3 site. The N-terminal one-third of NS3 functions as the catalytic subunit of a serine proteinase which cleaves at the 3/4A, 4A/4B, 4B/5A and 5A/5B sites, and NS4A is an essential cofactor for some of these cleavages. NS3 also encodes an RNA-stimulated NTPase/RNA helicase at its C terminus, and NS5B has been shown to possess an RNA-dependent RNA polymerase activity. To date, no functions have been reported for NS4B or NS5A in RNA replication, however, NS5A has been implicated in modulating the sensitivity of HCV to interferon. Sequence and structural conservation within the 3' terminal 98 bases of genomic RNA suggest a functional importance in the virus life-cycle and hence another target for antiviral intervention. Recently, HCV infection was shown to be initiated in chimpanzees following intrahepatic inoculation of RNA transcribed from cloned HCV cDNA. The ability to generate large quantities of infectious HCV RNA may facilitate the development of reliable cell culture replication systems useful for the evaluation of antiviral drugs.

  • bovine viral diarrhea virus ns3 serine proteinase polyprotein cleavage sites cofactor requirements and molecular model of an enzyme essential for pestivirus replication
    Journal of Virology, 1997
    Co-Authors: Ernesto Mendez, Paul R Caron, Chao Lin, Mark A Murcko, Marc S Collett, Charles M. Rice
    Abstract:

    Members of the Flaviviridae encode a serine proteinase termed NS3 that is responsible for processing at several sites in the viral polyproteins. In this report, we show that the NS3 proteinase of the pestivirus bovine viral diarrhea virus (BVDV) (NADL strain) is required for processing at nonstructural (NS) protein sites 3/4A, 4A/4B, 4B/5A, and 5A/5B but not for cleavage at the junction between NS2 and NS3. Cleavage sites of the proteinase were determined by amino-terminal sequence analysis of the NS4A, NS4B, NS5A, and NS5B proteins. A conserved leucine residue is found at the P1 position of all four cleavage sites, followed by either serine (3/4A, 4B/5A, and 5A/5B sites) or alanine (4A/4B site) at the P1' position. Consistent with this cleavage site preference, a structural model of the pestivirus NS3 proteinase predicts a highly hydrophobic P1 specificity pocket. trans-Processing experiments implicate the 64-residue NS4A protein as an NS3 proteinase cofactor required for cleavage at the 4B/5A and 5A/5B sites. Finally, using a full-length functional BVDV cDNA clone, we demonstrate that a catalytically active NS3 serine proteinase is essential for pestivirus replication.

  • the hepatitis c virus ns3 serine proteinase and ns4a cofactor establishment of a cell free trans processing assay
    Proceedings of the National Academy of Sciences of the United States of America, 1995
    Co-Authors: Chao Lin, Charles M. Rice
    Abstract:

    Abstract The hepatitis C virus RNA genome encodes a long polyprotein that is proteolytically processed into at least 10 products. The order of these cleavage products in the polyprotein is NH2-C-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B -COOH. A serine proteinase domain located in the N-terminal one-third of nonstructural protein NS3 mediates cleavage at four downstream sites (the 3/4A, 4A/4B, 4B/5A, and 5A/5B sites). In addition to the proteinase catalytic domain, the NS4A protein is required for processing at the 4B/5A site but not at the 5A/5B site. These cleavage events are likely to be essential for virus replication, making the serine proteinase an attractive antiviral target. Here we describe an in vitro assay where the NS3-4A polyprotein, NS3, the serine proteinase domain (the N-terminal 181 residues of NS3), and the NS4A cofactor were produced by cell-free translation and tested for trans-processing of radiolabeled substrates. Polyprotein substrates, NS4A-4B or truncated NS5A-5B, were cleaved in trans by all forms of the proteinase, whereas NS4A was also required for NS4B-5A processing. Proteolysis was abolished by substitution mutations previously shown to inactivate the proteinase or block cleavage at specific sites in vivo. Furthermore, N-terminal sequence analysis established that cleavage in vitro occurred at the authentic 4A/4B site. Translation in the presence of microsomal membranes enhanced processing for some, but not all, proteinase-substrate combinations. Trans-processing was both time and temperature dependent and was eliminated by treatment with a variety of detergents above their critical micelle concentrations. Among many common proteinase inhibitors tested, only high (millimolar) concentrations of serine proteinase inhibitors tosyllysyl chloromethyl ketone and 4-(2-aminoethyl)benzenesulfonyl fluoride inactivated the NS3 proteinase. This in vitro assay should facilitate purification and further characterization of the viral serine proteinase and identification of molecules which selectively inhibit its activity.

  • hepatitis c virus ns3 serine proteinase trans cleavage requirements and processing kinetics
    Journal of Virology, 1994
    Co-Authors: Chao Lin, Arash Grakoui, Bela Pragai, Charles M. Rice
    Abstract:

    The hepatitis C virus H strain (HCV-H) polyprotein is cleaved to produce at least 10 distinct products, in the order of NH2-C-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B -COOH. An HCV-encoded serine proteinase activity in NS3 is required for cleavage at four sites in the nonstructural region (3/4A, 4A/4B, 4B/5A, and 5A/5B). In this report, the HCV-H serine proteinase domain (the N-terminal 181 residues of NS3) was tested for its ability to mediate trans-processing at these four sites. By using an NS3-5B substrate with an inactivated serine proteinase domain, trans-cleavage was observed at all sites except for the 3/4A site. Deletion of the inactive proteinase domain led to efficient trans-processing at the 3/4A site. Smaller NS4A-4B and NS5A-5B substrates were processed efficiently in trans; however, cleavage of an NS4B-5A substrate occurred only when the serine proteinase domain was coexpressed with NS4A. Only the N-terminal 35 amino acids of NS4A were required for this activity. Thus, while NS4A appears to be absolutely required for trans-cleavage at the 4B/5A site, it is not an essential cofactor for serine proteinase activity. To begin to examine the conservation (or divergence) of serine proteinase-substrate interactions during HCV evolution, we demonstrated that similar trans-processing occurred when the proteinase domains and substrates were derived from two different HCV subtypes. These results are encouraging for the development of broadly effective HCV serine proteinase inhibitors as antiviral agents. Finally, the kinetics of processing in the nonstructural region was examined by pulse-chase analysis. NS3-containing precursors were absent, indicating that the 2/3 and 3/4A cleavages occur rapidly. In contrast, processing of the NS4A-5B region appeared to involve multiple pathways, and significant quantities of various polyprotein intermediates were observed. NS5B, the putative RNA polymerase, was found to be significantly less stable than the other mature cleavage products. This instability appeared to be an inherent property of NS5B and did not depend on expression of other viral polypeptides, including the HCV-encoded proteinases.

  • characterization of the hepatitis c virus encoded serine proteinase determination of proteinase dependent polyprotein cleavage sites
    Journal of Virology, 1993
    Co-Authors: Arash Grakoui, Czeslaw Wychowski, Stephen M Feinstone, David W Mccourt, Charles M. Rice
    Abstract:

    Processing of the hepatitis C virus (HCV) H strain polyprotein yields at least nine distinct cleavage products: NH2-C-E1-E2-NS2-NS3-NS4A-NS4B-NS5A-NS5B-CO OH. As described in this report, site-directed mutagenesis and transient expression analyses were used to study the role of a putative serine proteinase domain, located in the N-terminal one-third of the NS3 protein, in proteolytic processing of HCV polyproteins. All four cleavages which occur C terminal to the proteinase domain (3/4A, 4A/4B, 4B/5A, and 5A/5B) were abolished by substitution of alanine for either of two predicted residues (His-1083 and Ser-1165) in the proteinase catalytic triad. However, such substitutions have no observable effect on cleavages in the structural region or at the 2/3 site. Deletion analyses suggest that the structural and NS2 regions of the polyprotein are not required for the HCV NS3 proteinase activity. NS3 proteinase-dependent cleavage sites were localized by N-terminal sequence analysis of NS4A, NS4B, NS5A, and NS5B. Sequence comparison of the residues flanking these cleavage sites for all sequenced HCV strains reveals conserved residues which may play a role in determining HCV NS3 proteinase substrate specificity. These features include an acidic residue (Asp or Glu) at the P6 position, a Cys or Thr residue at the P1 position, and a Ser or Ala residue at the P1' position.

Raffaele De Francesco - One of the best experts on this subject based on the ideXlab platform.

  • new horizons in hepatitis c antiviral therapy with direct acting antivirals
    Hepatology, 2013
    Co-Authors: Alessio Aghemo, Raffaele De Francesco
    Abstract:

    Most direct-acting antivirals (DAAs) that are being developed as therapy against hepatitis C virus target the NS3/4A protease, the NS5A protein, and the NS5B polymerase. The latter enzyme offers different target sites: the catalytic domain for nucleos(t)ide analogues as well as a number of allosteric sites for nonnucleos(t)ide inhibitors. Two NS3/4A protease inhibitors have been approved recently, and more than 40 new NS3/4A, NS5A, or NS5B inhibitors are in development. These agents can achieve very high cure rates when combined with pegylated interferon-β and ribavirin and show promising clinical results when administered in all-oral combinations. In addition to the more canonical drug targets, new alternative viral targets for small-molecule drug development are emerging, such as p7 or NS4B and viral entry. Future research will need to define well-tolerated and cost-effective DAA combinations that provide the highest rates of viral eradication in all patients (including those with advanced liver disease), the broadest spectrum of action on viral genotypes showing minimal or no clinical resistance, and the shortest treatment duration. (Hepatology 2013)

  • molecular virology of the hepatitis c virus
    Journal of Hepatology, 1999
    Co-Authors: Raffaele De Francesco
    Abstract:

    Infection with the hepatitis C virus (HCV) is the major cause of nonA-nonB hepatitis worldwide. Although this virus cannot be cultivated in vitro, several of its key features have been elucidated in the past few years. The viral genome is a positive-sense, single-stranded, 9.6 kb long RNA molecule. The viral genome is translated into a single polyprotein of about 3000 amino acids. The viral polyprotein is proteolytically processed by the combination of cellular and viral proteinases in order to yield all the mature viral gene products. The genomic order of HCV has been shown to be C-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B. C, E1 and E2 are the virion.structural proteins. The function of p7 is currently unknown. These proteins have been shown to arise from the viral polyprotein via proteolytic processing by the host signal peptidases. Generation of the mature nonstructural proteins, NS2 to NS5B, relies on the activity of viral proteinases. Cleavage at the NS2/NS3 junction is accomplished by a metal-dependent autocatalytic proteinase encoded within NS2 and the N-terminus of NS3. The remaining cleavages downstream from this site are effected by a serine proteinase also contained within the N-terminal region of NS3. NS3 also contains an RNA helicase domain at its C-terminus. NS3 forms a heterodimeric complex with NS4A. The latter is a membrane protein that has been shown to act as a cofactor of the proteinase. While no function has yet been attributed to NS4B, it has recently been suggested that NS5A is involved in mediating the resistance of the hepatitis C virus to the action of interferon. Finally, the NS5B protein has been shown to be the viral RNA-dependent RNA polymerase.

  • product inhibition of the hepatitis c virus ns3 protease
    Biochemistry, 1998
    Co-Authors: Christian Steinkuhler, Gabriella Biasiol, Mirko Brunetti, Andrea Urbani, Uwe Koch, Riccardo Cortese, And Antonello Pessi, Raffaele De Francesco
    Abstract:

    The nonstructural protein NS3 of the hepatitis C virus (HCV) harbors a serine protease domain that is responsible for most of the processing events of the nonstructural region of the polyprotein. Its inhibition is presently regarded as a promising strategy for coping with the disease caused by HCV. In this work, we show that the NS3 protease undergoes inhibition by the N-terminal cleavage products of substrate peptides corresponding to the NS4A−NS4B, NS4B−NS5A, and NS5A−NS5B cleavage sites, whereas no inhibition is observed with a cleavage product of the intramolecular NS3−NS4A junction. The Ki values of the hexamer inhibitory products [Ki(NS4A) = 0.6 μM, Ki(NS5A) = 1.4 μM, and Ki(NS4B) = 180 μM] are lower than the Km values of the respective substrate peptides [Km(NS4A−NS4B) = 10 μM, Km(NS5A−NS5B) = 3.8 μM, and Km(NS4B−NS5A) > 1000 μM]. Mutagenesis experiments have identified Lys136 as an important determinant for product binding. The phenomenon of product inhibition can be exploited to optimize peptide ...

  • potent peptide inhibitors of human hepatitis c virus ns3 protease are obtained by optimizing the cleavage products
    Biochemistry, 1998
    Co-Authors: Paolo Ingallinella, Christian Steinkuhler, Riccardo Cortese, Raffaele De Francesco, Sergio Altamura, Elisabetta Bianchi, Marina Taliani, Raffaele Ingenito, And Antonello Pessi
    Abstract:

    In the absence of a broadly effective cure for hepatitis caused by hepatitis C virus (HCV), much effort is currently devoted to the search for inhibitors of the virally encoded protease NS3. This chymotrypsin-like serine protease is required for the maturation of the viral polyprotein, cleaving it at the NS3-NS4A, NS4A-NS4B, NS4B-NS5A, and NS5A-NS5B sites. In the course of our studies on the substrate specificity of NS3, we found that the products of cleavage corresponding to the P6-P1 region of the substrates act as competitive inhibitors of the enzyme, with IC50s ranging from 360 to 1 microM. A detailed study of product inhibition by the natural NS3 substrates is described in the preceding paper [Steinkuhler, C., et al. (1997) Biochemistry 37, 8899-8905]. Here we report the results of a study of the structure-activity relationship of the NS3 product inhibitors, which suggest that the mode of binding of the P region-derived products is similar to the ground-state binding of the corresponding substrates, with additional binding energy provided by the C-terminal carboxylate. Optimal binding requires a dual anchor: an "acid anchor" at the N terminus and a "P1 anchor" at the C-terminal part of the molecule. We have then optimized the sequence of the product inhibitors by using single mutations and combinatorial peptide libraries based on the most potent natural product, Ac-Asp-Glu-Met-Glu-Glu-Cys-OH (Ki = 0.6 microM), derived from cleavage at the NS4A-NS4B junction. By sequentially optimizing positions P2, P4, P3, and P5, we obtained several nanomolar inhibitors of the enzyme. These compounds are useful both as a starting point for the development of peptidomimetic drugs and as structural probes for investigating the substrate binding site of NS3 by modeling, NMR, and crystallography.

  • in vitro activity of hepatitis c virus protease ns3 purified from recombinant baculovirus infected sf9 cells
    Journal of Biological Chemistry, 1996
    Co-Authors: Christian Steinkuhler, Licia Tomei, Raffaele De Francesco
    Abstract:

    A recombinant Baculovirus expression system was used for the production of a 20-kDa protein encompassing the hepatitis C virus NS3 protease domain. The protein was purified to apparent homogeneity after detergent extraction of cell homogenates. It was shown to be a monomer in solution and to cleave the in vitro translated precursor proteins NS4A-NS4B and NS5A-NS5B, but not the NS4B-NS5A or the NS3-NS4A precursors. The enzyme also cleaved a 20-mer peptide corresponding to the NS4A-NS4B junction with kcat/Km = 174 m(-1) s(-1). Peptides harboring NS4A sequences comprising amino acids 21-54 (Pep4A21-54) and 21-34 (Pep4A21-34) were found to induce an up to 2.8-fold acceleration of cleavage. Kinetic analysis revealed that this acceleration was due to an increase in kcat whereas no significant effect on Km could be detected. Pep4A21-54 was also an absolute requirement for cleavage of in vitro translated NS4B-NS5A by the purified protease. From these data we conclude that: (i) the purified protease domain shows substrate specificity and cleavage requirements similar to those previously reported on the basis of transfection experiments, (ii) activation of the purified protease by the NS4A co-factor can be mimicked by synthetic peptide analogs, and (iii) a central hydrophobic region of NS4A with a minimum core of 14 amino acids is responsible for the interaction with NS3.

Santseharay Ramirez - One of the best experts on this subject based on the ideXlab platform.

  • hcv genotype 6a escape from and resistance to velpatasvir pibrentasvir and sofosbuvir in robust infectious cell culture models
    Gastroenterology, 2018
    Co-Authors: Long V Pham, Jannie Pedersen, Ulrik Fahnøe, Judith M Gottwein, Santseharay Ramirez, Yiping Li, Jens Bukh
    Abstract:

    Background & Aims Chronic liver diseases caused by hepatitis C virus (HCV) genotype 6 are prevalent in Asia, and millions of people require treatment with direct-acting antiviral regimens, such as NS5A inhibitor velpatasvir combined with the NS5B polymerase inhibitor sofosbuvir. We developed infectious cell culture models of HCV genotype 6a infection to study the effects of these inhibitors and the development of resistance. Methods The consensus sequences of strains HK2 (MG717925) and HK6a (MG717928), originating from serum of patients with chronic HCV infection, were determined by Sanger sequencing of genomes amplified by reverse-transcription polymerase chain reaction. In vitro noninfectious full-length clones of these 6a strains were subsequently adapted in Huh7.5 cells, primarily by using substitutions identified in JFH1-based Core-NS5A and Core-NS5B genotype 6a recombinants. We studied the efficacy of NS5A and NS5B inhibitors in concentration-response assays. We examined the effects of long-term culture of Huh7.5 cells incubated with velpatasvir and sofosbuvir singly or combined following infection with passaged full-length HK2 or HK6a recombinant viruses. Resistance-associated substitutions (RAS) were identified by Sanger and next-generation sequencing, and their effects on viral fitness and in drug susceptibility were determined in reverse-genetic experiments. Results Adapted full-length HCV genotype 6a recombinants HK2cc and HK6acc had fast propagation kinetics and high infectivity titers. Compared with an HCV genotype 1a recombinant, HCV genotype 6a recombinants of strains HK2 and HK6a were equally sensitive to daclatasvir, elbasvir, velpatasvir, pibrentasvir, and sofosbuvir, but less sensitive to ledipasvir, ombitasvir, and dasabuvir. Long-term exposure of HCV genotype 6a-infected Huh7.5 cells with a combination of velpatasvir and sofosbuvir resulted in clearance of the virus, but the virus escaped the effects of single inhibitors via emergence of the RAS L31V in NS5A (conferring resistance to velpatasvir) and S282T in NS5B (conferring resistance to sofosbuvir). Engineered recombinant genotype 6a viruses with single RAS mediated resistance to velpatasvir or sofosbuvir. HCV genotype 6a viruses with RAS NS5A-L31V or NS5B-S282T were however, able to propagate and escape in Huh7.5 cells exposed to the combination of velpatasvir and sofosbuvir. Further, HCV genotype 6a with NS5A-L31V was able to propagate and escape in the presence of pibrentasvir with emergence of NS5A-L28S, conferring a high level of resistance to this inhibitor. Conclusions Strains of HCV genotype 6a isolated from patients can be adapted to propagate in cultured cells, permitting studies of the complete life cycle for this important genotype. The combination of velpatasvir and sofosbuvir is required to block propagation of original HCV genotype 6a, which quickly becomes resistant to single inhibitors via the rapid emergence and persistence of RAS. These features of HCV genotype 6a could compromise treatment.

  • differential sensitivity of 5 utr ns5a recombinants of hepatitis c virus genotypes 1 6 to protease and ns5a inhibitors
    Gastroenterology, 2014
    Co-Authors: Yiping Li, Judith M Gottwein, Santseharay Ramirez, Daryl Humes, Sanne B. Jensen, Jens Bukh
    Abstract:

    Background & Aims Hepatitis C virus (HCV) therapy will benefit from the preclinical evaluation of direct-acting antiviral (DAA) agents in infectious culture systems that test the effects on different virus genotypes. We developed HCV recombinants comprising the 5′ untranslated region−NS5A (5-5A) from genotypes 1−6 and 2a(JFH1) NS5B-3′ untranslated region, and tested the effects of NS3 protease and NS5A inhibitors on these recombinants. Methods The HCV 5-5A recombinants with previously identified mutations in the NS3-helicase (F1464L), NS4A (A1672S), and NS5B (D2979G) were adapted and improved, by incorporating additional recovered mutations that increased their propagation in Huh7.5 cells. Concentration−response profiles were determined for each DAA agent in replicate infected Huh7.5 cells. Results Developed efficient 1a(H77), 1a(TN), 3a(S52), 4a(ED43), 5a(SA13), and 6a(HK6a) 5-5A recombinants did not require mutations after viral passage in the NS3 protease or NS5A domain-I regions targeted by the drugs. They were inhibited in a concentration-dependent manner by the NS3 protease inhibitors telaprevir, boceprevir, asunaprevir, simeprevir, vaniprevir, faldaprevir, and MK-5172 and by the NS5A inhibitor daclatasvir. The 1a(TN) 5-5A and JFH1-independent full-length viruses had similar levels of sensitivity to the DAA agents, validating the 5-5A recombinants as surrogates for full-length viruses in DAA testing. Compared with the 1a(TN) full-length virus, the 3a(S52) 5-5A recombinant was highly resistant to all protease inhibitors, and the 4a(ED43) recombinant was highly resistant to telaprevir and boceprevir, but most sensitive to other protease inhibitors. Compared with other protease inhibitors, MK-5172 had exceptional potency against all HCV genotypes. The NS5A inhibitor daclatasvir had the highest potency observed, but with genotype-dependent activity. Conclusions The mutations F1464L, A1672S, and D2979G permitted the development of efficient HCV recombinants comprising genotype-specific 5′ untranslated region−NS5A (5-5A), which include the natural NS3 protease and NS5A domain-I drug targets. The robust replication of adapted 5-5A recombinants allowed for direct comparison of NS3 protease and NS5A inhibitors against HCV strains of genotypes 1−6.

  • highly efficient full length hepatitis c virus genotype 1 strain tn infectious culture system
    Proceedings of the National Academy of Sciences of the United States of America, 2012
    Co-Authors: Judith M Gottwein, Santseharay Ramirez, Jens Bukh, Sanne B. Jensen, Robert H Purcell
    Abstract:

    Chronic infection with hepatitis C virus (HCV) is an important cause of end stage liver disease worldwide. In the United States, most HCV-related disease is associated with genotype 1 infection, which remains difficult to treat. Drug and vaccine development was hampered by inability to culture patient isolates representing HCV genotypes 1–7 and subtypes; only a recombinant 2a genome (strain JFH1) spontaneously replicated in vitro. Recently, we identified three mutations F1464L/A1672S/D2979G (LSG) in the nonstructural (NS) proteins, essential for development of full-length HCV 2a (J6) and 2b (J8) culture systems in Huh7.5 cells. Here, we developed a highly efficient genotype 1a (strain TN) full-length culture system. We initially found that the LSG substitutions conferred viability to an intergenotypic recombinant composed of TN 5′ untranslated region (5′UTR)-NS5A and JFH1 NS5B-3′UTR; recovered viruses acquired two adaptive mutations located in NS3 and NS4B. Introduction of these changes into a replication-deficient TN full-length genome, harboring LSG, permitted efficient HCV production. Additional identified NS4B and NS5B mutations fully adapted the TN full-length virus. Thus, a TN genome with 8 changes (designated TN cell-culture derived, TNcc) replicated efficiently and released infectious particles of ∼5 log10 focus-forming units per mL; passaged TNcc did not require additional changes. IFN-α and directly acting antivirals targeting the HCV protease, NS5A, and NS5B, each inhibited full-length TN infection dose-dependently. Given the unique importance of genotype 1 for pathogenesis, this infectious 1a culture system represents an important advance in HCV research. The approach used and the mutations identified might permit culture development for other HCV isolates, thus facilitating vaccine development and personalized treatment.

Seishi Murakami - One of the best experts on this subject based on the ideXlab platform.

  • hepatitis c virus hcv ns5a binds rna dependent rna polymerase rdrp NS5B and modulates rna dependent rna polymerase activity
    Journal of Biological Chemistry, 2002
    Co-Authors: Yukihiro Shirota, Hong Luo, Weiping Qin, Shuichi Kaneko, Tatsuya Yamashita, Kenichi Kobayashi, Seishi Murakami
    Abstract:

    Hepatitis C virus (HCV) NS5B is RNA-dependent RNA polymerase (RdRP), the essential catalytic enzyme for HCV replication. Recently, NS5A has been reported to be important for the establishment of HCV replication in vitro by the adaptive mutations, although its role in viral replication remains uncertain. Here we report that purified bacterial recombinant NS5A and NS5B directly interact with each other in vitro, detected by glutathione S-transferase (GST) pull-down assay. Furthermore, complex formation of these proteins transiently coexpressed in mammalian cells was detected by coprecipitation. Using terminally and internally truncated NS5A, two discontinuous regions of NS5A (amino acids 105-162 and 277-334) outside of the adaptive mutations were identified to be independently essential for the binding both in vivo and in vitro (Yamashita, T., Kaneko, S., Shirota, Y., Qin, W., Nomura, T., Kobayashi, K., and Mkyrakami, S. (1998) J. Biol. Chem. 273, 15479-15486). We previously examined the effect of His-NS5A on RdRP activity of the soluble recombinant NS5Bt in vitro (see Yamashita et al. above). Wild NS5A weakly stimulated at first (when less than 0.1 molar ratio to NS5B) and then inhibited the NS5Bt RdRP activity in a dose-dependent manner. The internal deletion mutants defective in NS5B binding exhibited no inhibitory effect, indicating that the NS5B binding is necessary for the inhibition. Taken together, our results support the idea that NS5A modulates HCV replication as a component of replication complex.

  • rna dependent rna polymerase activity of the soluble recombinant hepatitis c virus NS5B protein truncated at the c terminal region
    Journal of Biological Chemistry, 1998
    Co-Authors: Tatsuya Yamashita, Yukihiro Shirota, Weiping Qin, Shuichi Kaneko, Kenichi Kobayashi, Takahiro Nomura, Seishi Murakami
    Abstract:

    Abstract The hepatitis C virus (HCV) NS5B protein encodes an RNA-dependent RNA polymerase (RdRP), which is the central catalytic enzyme of HCV replicase. We established a new method to purify soluble HCV NS5B in the glutathioneS-transferase-fused form NS5Bt from Escherichia coli which lacks the C-terminal 21 amino acid residues encompassing a putative anchoring domain (anino acids 2990–3010). The recombinant soluble protein exhibited RdRP activity in vitro which was dependent upon the template and primer, but it did not exhibit the terminal transferase activity that has been reported to be associated with the recombinant NS5B protein from insect cells. The RdRP activity of purified glutathioneS-transferase-NS5Bt and thrombin-cleavaged non-fused NS5Bt shares most of the properties. Substitution mutations of NS5Bt at the GDD motif, which is highly conserved among viral RdRPs, and at the clustered basic residues (amino acids 2919–2924 and 2693–2699) abolished the RdRP activity. The C-terminal region of NS5B, which is dispensable for the RdRP activity, dramatically affected the subcellular localization of NS5B retaining it in perinuclear sites in transiently overexpressed mammalian cells. These results may provide some clues to dissecting the molecular mechanism of the HCV replication and also act as a basis for developing new anti-viral drugs.