NT5E

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 32851098 Experts worldwide ranked by ideXlab platform

John E. Casida - One of the best experts on this subject based on the ideXlab platform.

  • evidence that mouse brain neuropathy target esterase is a lysophospholipase
    Proceedings of the National Academy of Sciences of the United States of America, 2003
    Co-Authors: Gary B. Quistad, Christopher J. Winrow, Carrolee Barlow, Susan E Sparks, John E. Casida
    Abstract:

    Abstract Neuropathy target esterase (NTE) is inhibited by several organophosphorus (OP) pesticides, chemical warfare agents, lubricants, and plasticizers, leading to OP-induced delayed neuropathy in people (>30,000 cases of human paralysis) and hens (the best animal model for this demyelinating disease). The active site region of NTE as a recombinant protein preferentially hydrolyzes lysolecithin, suggesting that this enzyme may be a type of lysophospholipase (LysoPLA) with lysolecithin as its physiological substrate. This hypothesis is tested here in mouse brain by replacing the phenyl valerate substrate of the standard NTE assay with lysolecithin for an “NTE-LysoPLA” assay with four important findings. First, NTE-LysoPLA activity, as the NTE activity, is 41–45% lower in Nte-haploinsufficient transgenic mice than in their wild-type littermates. Second, the potency of six delayed neurotoxicants or toxicants as in vitro inhibitors varies from IC50 0.02 to 13,000 nM and is essentially the same for NTE-LysoPLA and NTE (r2 = 0.98). Third, the same six delayed toxicants administered i.p. to mice at multiple doses inhibit brain NTE-LysoPLA and NTE to the same extent (r2 = 0.90). Finally, their in vivo inhibition of brain NTE-LysoPLA generally correlates with delayed toxicity. Therefore, OP-induced delayed toxicity in mice, and possibly the hyperactivity associated with NTE deficiency, may be due to NTE-LysoPLA inhibition, leading to localized accumulation of lysolecithin, a known demyelinating agent and receptor-mediated signal transducer. This mouse model has some features in common with OP-induced delayed neuropathy in hens and people but differs in the neuropathological signs and apparently the requirement for NTE aging.

  • Loss of neuropathy target esterase in mice links organophosphate exposure to hyperactivity
    Nature Genetics, 2003
    Co-Authors: Christopher J. Winrow, Matthew L. Hemming, Duane M. Allen, Gary B. Quistad, John E. Casida, Carrolee Barlow
    Abstract:

    Neuropathy target esterase (NTE) is involved in neural development and is the target for neurodegeneration induced by selected organophosphorus pesticides and chemical warfare agents. We generated mice with disruptions in Nte , the gene encoding NTE. Nte ^ −/− mice die after embryonic day 8, and Nte ^ +/− mice have lower activity of Nte in the brain and higher mortality when exposed to the Nte-inhibiting compound ethyl octylphosphonofluoridate (EOPF) than do wild-type mice. Nte ^ +/− and wild-type mice treated with 1 mg per kg of body weight of EOPF have elevated motor activity, showing that even minor reduction of Nte activity leads to hyperactivity. These studies show that genetic or chemical reduction of Nte activity results in a neurological phenotype of hyperactivity in mammals and indicate that EOPF toxicity occurs directly through inhibition of Nte without the requirement for Nte gain of function or aging.

  • neuropathy target esterase of hen brain active site reactions with 2 octyl 3h octyl 4h 1 3 2 benzodioxaphosphorin 2 oxide and 2 octyl 4h 1 3 2 aryl 3h benzodioxaphosphorin 2 oxide
    Journal of Neurochemistry, 2002
    Co-Authors: Minoru Yoshida, Gary B. Quistad, Motohiro Tomizawa, John E. Casida
    Abstract:

    2-Octyl-4H-1,3,2-benzodioxaphosphorin 2-oxide (octyl-BDPO) is one of the most potent inhibitors known for neuropathy target esterase (NTE) of hen brain with 50% inhibition at 0.2 nM. Two NTE-like proteins, i.e., resistant to paraoxon and sensitive to mipafox, of approximately 155 and approximately 119 kDa (designated NTE-155 and NTE-119, respectively) are labeled by [octyl-3H]octyl-BDPO and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Labeling with [aryl-3H]octyl-BDPO is only approximately 15% of that with [octyl-3H]octyl-BDPO, indicating that the majority of the phosphorylated NTE undergoes aging with only a small proportion of nonaged target or intramolecular group transfer ("alkylation"). NTE-155 and NTE-119 have the same kinetic constants and maximal number of phosphorylation sites, equivalent for each of them to 26 fmol/mg of protein and totaling at least 0.44-1.2 micrograms of NTE protein/g of brain. Structure-activity investigations involving 17 combinations of organophosphorus (OP) compounds of varied chemical type, stereochemistry, and concentration establish an excellent correlation (r = 0.95) between inhibition of NTE activity and protein labeling and thereby the toxicological relevance of these assays, which equally implicate NTE-155 and NTE-119 (probably an autolysis product of NTE-155) as target in OP-induced delayed neuropathy. [octyl-3H]-Octyl-BDPO is an improved probe for NTE in terms of its potency, reactivity, selectivity, and the formation of 3H-labeled NTE with a stable phosphorus-carbon bond.

G F Makhaeva - One of the best experts on this subject based on the ideXlab platform.

  • neuropathy target esterase nte pnpla6 and organophosphorus compound induced delayed neurotoxicity opidn
    Advances in neurotoxicology, 2020
    Co-Authors: John K. Fink, Robert B Hufnagel, Paul Glynn, G F Makhaeva
    Abstract:

    Abstract Systemic inhibition of neuropathy target esterase (NTE) with certain organophosphorus (OP) compounds produces OP compound-induced delayed neurotoxicity (OPIDN), a distal degeneration of axons in the central nervous system (CNS) and peripheral nervous system (PNS), thereby providing a powerful model for studying a spectrum of neurodegenerative diseases. Axonopathies are important medical entities in their own right, but in addition, illnesses once considered primary neuronopathies are now thought to begin with axonal degeneration. These disorders include Alzheimer's disease, Parkinson's disease, and motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Moreover, conditional knockout of NTE in the mouse CNS produces vacuolation and other degenerative changes in large neurons in the hippocampus, thalamus, and cerebellum, along with degeneration and swelling of axons in ascending and descending spinal cord tracts. In humans, NTE mutations cause a variety of neurodegenerative conditions resulting in a range of deficits including spastic paraplegia and blindness. Mutations in the Drosophila NTE orthologue SwissCheese (SWS) produce neurodegeneration characterized by vacuolization that can be partially rescued by expression of wild-type human NTE, suggesting a potential therapeutic approach for certain human neurological disorders. This chapter defines NTE and OPIDN, presents an overview of OP compounds, provides a rationale for NTE research, and traces the history of discovery of NTE and its relationship to OPIDN. It then briefly describes subsequent studies of NTE, including practical applications of the assay; aspects of its domain structure, subcellular localization, and tissue expression; abnormalities associated with NTE mutations, knockdown, and conventional or conditional knockout; and hypothetical models to help guide future research on elucidating the role of NTE in OPIDN.

  • Neuropathy target esterase (NTE): overview and future.
    Chemico-biological interactions, 2012
    Co-Authors: Rudy J. Richardson, Sanjeeva J. Wijeyesakere, John K. Fink, Nichole D. Hein, G F Makhaeva
    Abstract:

    Neuropathy target esterase (NTE) was discovered by M.K. Johnson in his quest for the entity responsible for the striking and mysterious paralysis brought about by certain organophosphorus (OP) esters. His pioneering work on OP neuropathy led to the view that the biochemical lesion consisted of NTE that had undergone OP inhibition and aging. Indeed, nonaging NTE inhibitors failed to produce disease but protected against neuropathy from subsequently administered aging inhibitors. Thus, inhibition of NTE activity was not the culprit; rather, formation of an abnormal protein was the agent of the disorder. More recently, however, Paul Glynn and colleagues showed that whereas conventional knockout of the NTE gene was embryonic lethal, conditional knockout of central nervous system NTE produced neurodegeneration, suggesting to these authors that the absence of NTE rather than its presence in some altered form caused disease. We now know that NTE is the 6th member of a 9-protein family called patatin-like phospholipase domain-containing proteins, PNPLA1-9. Mutations in the catalytic domain of NTE (PNPLA6) are associated with a slowly developing disease akin to OP neuropathy and hereditary spastic paraplegia called NTE-related motor neuron disorder (NTE-MND). Furthermore, the NTE protein from affected individuals has altered enzymological characteristics. Moreover, closely related PNPLA7 is regulated by insulin and glucose. These seemingly disparate findings are not necessarily mutually exclusive, but we need to reconcile recent genetic findings with the historical body of toxicological data indicating that inhibition and aging of NTE are both necessary in order to produce neuropathy from exposure to certain OP compounds. Solving this mystery will be satisfying in itself, but it is also an enterprise likely to pay dividends by enhancing our understanding of the physiological and pathogenic roles of the PNPLA family of proteins in neurological health and disease, including a potential role for NTE in diabetic neuropathy.

  • biosensor detection of neuropathy target esterase in whole blood as a biomarker of exposure to neuropathic organophosphorus compounds
    Journal of Toxicology and Environmental Health, 2003
    Co-Authors: G F Makhaeva, V V Malygin, Larisa V Sigolaeva, L V Zhuravleva, A V Eremenko, I N Kurochkin, Rudy J. Richardson
    Abstract:

    Neuropathy target esterase (NTE) is the target protein for neuropathic organophosphorus (OP) compounds that produce OP compound-induced delayed neurotoxicity (OPIDN). Inhibition/aging of brain NTE within hours of exposure predicts the potential for development of OPIDN in susceptible animal models. Lymphocyte NTE has also found limited use as a biomarker of human exposure to neuropathic OP compounds. Recently, a highly sensitive biosensor was developed for NTE activity using a tyrosinase carbon-paste electrode for amperometric detection of phenol produced by hydrolysis of the substrate, phenyl valerate. The I50 (20 min at 37 degrees C) for N,N'-di-2-propylphosphorodiamidofluoridate (mipafox) against hen lymphocyte NTE was 6.94 +/- 0.28 microM amperometrically and 6.02 +/- 0.71 microM colorimetrically. For O,O-di1-propyl O-2,2-dichlorvinyl phosphate (PrDChVP), the I50 against hen brain NTE was 39 +/- 8 nM amperometrically and 42 +/- 2 nM colorimetrically. The biosensor enables NTE to be assayed in whole blood, whereas this cannot be done with the usual colorimetric method. Amperometrically, I50 values for PrDChVP against hen and human blood NTE were 66 +/- 3 and 70 +/- 14 nM, respectively. To study the possibility of using blood NTE inhibition as a biochemical marker of neuropathic OP compound exposure, NTE activities in brain and lymphocytes as well in brain and blood were measured 24 h after dosing hens with PrDChVP. Brain, lymphocyte, and blood NTE were inhibited in a dose-responsive manner, and NTE inhibition was highly correlated between brain and lymphocyte (r = .994) and between brain and blood (r = .997). The results suggest that the biosensor NTE assay for whole blood could serve as a biomarker of exposure to neuropathic OP compounds as well as a predictor of OPIDN and an adjunct to its early diagnosis.

  • a stable preparation of hen brain neuropathy target esterase for rapid biochemical assessment of neurotoxic potential of organophosphates
    Chemico-Biological Interactions, 1999
    Co-Authors: G F Makhaeva, V V Malygin
    Abstract:

    Neuropathy target esterase (NTE) is a molecular target for organophosphate-induced delayed neurotoxicity (OPIDN). This enzyme has proved to be an excellent tool for the assessment of neuropathic potential of organophosphates (OP), in particular by comparison of an OP inhibitory activity in vitro against NTE and acetylcholinesterase. A large-scale OP screening for delayed neurotoxicity was largely prevented by the lack of an available stable preparation of NTE. To obtain a stable NTE preparation the influence of intensive freezing and subsequent lyophilization of paraoxon-preinhibited (P2+P3) hen brain membrane fraction on NTE properties has been studied using two neuropathic OP: mipafox and O,O-dipropyldichlorovinyl phosphate (PrDChVP). It was shown that lyophilization preserved a high NTE specific activity and did not alter the inhibitor characteristics of the enzyme. A long-term storage study showed that lyophilized NTE preparation exhibited inhibitory features actually identical to those of the native enzyme during 1 year and retained rather high specific activity; in this case some loss of NTE specific activity has been observed. Comparative studies of inhibition of the native and lyophilized NTE preparations by a model series of phenyl phosphonates RO(C6H5)P(O)ONCClCH3 (R=alkyl), demonstrated a good correlation between the values pI50 obtained with both enzyme preparations as well as identical structure-activity relationships for the lyophilized and native enzymes. The results allow the conclusion that the obtained NTE preparation can be used as a standard, stable and readily available source of NTE for assessing the anti-NTE activity of OP.

Juleen R Zierath - One of the best experts on this subject based on the ideXlab platform.

  • suppression of 5 nucleotidase enzymes promotes amp activated protein kinase ampk phosphorylation and metabolism in human and mouse skeletal muscle
    Journal of Biological Chemistry, 2011
    Co-Authors: Sameer S Kulkarni, Hakan Karlsson, Ferenc Szekeres, Alexander V Chibalin, Anna Krook, Juleen R Zierath
    Abstract:

    Abstract The 5′-nucleotidase (NT5) family of enzyme dephosphorylates non-cyclic nucleoside monophosphates to produce nucleosides and inorganic phosphates. We hypothesized that gene silencing of NT5 enzymes to increase the intracellular availability of AMP would increase AMP-activated protein kinase (AMPK) activity and metabolism. We determined the role of cytosolic NT5 in metabolic responses linked to the development of insulin resistance in obesity and type 2 diabetes. Using siRNA to silence NT5C2 expression in cultured human myotubes, we observed a 2-fold increase in the AMP/ATP ratio, a 2.4-fold increase in AMPK phosphorylation (Thr172), and a 2.8-fold increase in acetyl-CoA carboxylase phosphorylation (Ser79) (p < 0.05). siRNA silencing of NT5C2 expression increased palmitate oxidation by 2-fold in the absence and by 8-fold in the presence of 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside. This was paralleled by an increase in glucose transport and a decrease in glucose oxidation, incorporation into glycogen, and lactate release from NT5C2-depleted myotubes. Gene silencing of NT5C1A by shRNA injection and electroporation in mouse tibialis anterior muscle reduced protein content (60%; p < 0.05) and increased phosphorylation of AMPK (60%; p < 0.05) and acetyl-CoA carboxylase (50%; p < 0.05) and glucose uptake (20%; p < 0.05). Endogenous expression of NT5C enzymes inhibited basal lipid oxidation and glucose transport in skeletal muscle. Reduction of 5′-nucleotidase expression or activity may promote metabolic flexibility in type 2 diabetes.

  • suppression of 5 nucleotidase enzymes promotes amp activated protein kinase ampk phosphorylation and metabolism in human and mouse skeletal muscle
    Journal of Biological Chemistry, 2011
    Co-Authors: Sameer S Kulkarni, Hakan Karlsson, Ferenc Szekeres, Alexander V Chibalin, Anna Krook, Juleen R Zierath
    Abstract:

    The 5'-nucleotidase (NT5) family of enzyme dephosphorylates non-cyclic nucleoside monophosphates to produce nucleosides and inorganic phosphates. We hypothesized that gene silencing of NT5 enzymes to increase the intracellular availability of AMP would increase AMP-activated protein kinase (AMPK) activity and metabolism. We determined the role of cytosolic NT5 in metabolic responses linked to the development of insulin resistance in obesity and type 2 diabetes. Using siRNA to silence NT5C2 expression in cultured human myotubes, we observed a 2-fold increase in the AMP/ATP ratio, a 2.4-fold increase in AMPK phosphorylation (Thr(172)), and a 2.8-fold increase in acetyl-CoA carboxylase phosphorylation (Ser(79)) (p < 0.05). siRNA silencing of NT5C2 expression increased palmitate oxidation by 2-fold in the absence and by 8-fold in the presence of 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside. This was paralleled by an increase in glucose transport and a decrease in glucose oxidation, incorporation into glycogen, and lactate release from NT5C2-depleted myotubes. Gene silencing of NT5C1A by shRNA injection and electroporation in mouse tibialis anterior muscle reduced protein content (60%; p < 0.05) and increased phosphorylation of AMPK (60%; p < 0.05) and acetyl-CoA carboxylase (50%; p < 0.05) and glucose uptake (20%; p < 0.05). Endogenous expression of NT5C enzymes inhibited basal lipid oxidation and glucose transport in skeletal muscle. Reduction of 5'-nucleotidase expression or activity may promote metabolic flexibility in type 2 diabetes.

Jia-xiang Chen - One of the best experts on this subject based on the ideXlab platform.

  • Down-Regulation of Neuropathy Target Esterase in Preeclampsia Placenta Inhibits Human Trophoblast Cell Invasion via Modulating MMP-9 Levels
    Karger Publishers, 2018
    Co-Authors: Ting Zhong, Jia-xiang Chen, Bei Yang, Yan Ling, Xingxing Xie, Dalei Zhang, Jiexiu Ouyang, Haibin Kuang
    Abstract:

    Background/Aims: Neuropathy target esterase (NTE, also known as neurotoxic esterase) is proven to deacylate phosphatidylcholine (PC) to glycerophosphocholine as a phospholipase B. Recently; studies showed that artificial phosphatidylserine/PC microvesicles can induce preeclampsia (PE)-like changes in pregnant mice. However, it is unclear whether NTE plays a key role in the pathology of PE, a pregnancy-related disease, which was characterized by deficient trophoblast invasion and reduced trophoblast-mediated remodeling of spiral arteries. The aim of this study was to investigate the expression pattern of NTE in the placenta from women with PE and normal pregnancy, and the molecular mechanism of NTE involved in the development of PE. Methods: NTE expression levels in placentas from 20 pregnant women with PE and 20 healthy pregnant women were detected using quantitative PCR and immunohistochemistry staining. The effect of NTE on trophoblast migration and invasion and the underlying mechanisms were examined in HTR-8/SVneo cell lines by transfection method. Results: NTE mRNA and protein expression levels were significantly decreased in preeclamptic placentas than normal control. Over-expression of NTE in HTR-8/SVneo cells significantly promoted trophoblast cells migration and invasion and was associated with increased MMP-9 levels. Conversely, shRNA-mediated down-regulation of NTE markedly inhibited the cell migration and invasion. In addition, silencing NTE reduced the MMP-9 activity and phosphorylated Erk1/2 and AKT levels. Conclusions: Our results suggest that the decreased NTE may contribute to the development of PE through impairing trophoblast invasion by down-regulating MMP-9 via the Erk1/2 and AKT signaling pathway

  • creb is required for camp pka signals upregulating neuropathy target esterase expression
    DNA and Cell Biology, 2013
    Co-Authors: Jia-xiang Chen
    Abstract:

    Neuropathy target esterase (NTE), which has been proposed as the primary target of organophosphorus compounds that cause delayed neuropathy with degeneration of nerve axons, is expressed primarily in neural cells but is also detected in non-neural cells. However, little is known about the regulation of NTE gene in cells. We found that a cyclic-AMP (cAMP)-response element (CRE) exists in the 5′ flanking sequence of NTE gene in HeLa cells, which implies that NTE may be regulated by the transcription factor cAMP-response element-binding protein (CREB). In the study, knockdown of CREB decreased the protein and mRNA levels of NTE and inhibited the upregulation by cAMP/PKA signaling. Moreover, we observed that knockdown of CREB significantly decreased luciferase activity of the NTE gene promoter, while it had no effect on that of the CREB binding sites of mutated NTE gene promoter and truncated NTE gene promoter lacking the CREB binding site. cAMP/PKA signals could increase NTE reporter gene activity, while kno...

  • regulation of neuropathy target esterase by the camp protein kinase a signal
    Pharmacological Research, 2010
    Co-Authors: Jia-xiang Chen, Ding-xin Long, Wei-yuan Hou
    Abstract:

    As a phospholipase B, neuropathy target esterase (NTE) is responsible for the conversion of phosphatidylcholine (PC) to glycerophosphocholine (GPC). We examined the role of cAMP in the regulation of NTE in mammalian cells. Endogenous NTE activity was increased by cAMP-elevating chemicals, including dibutyryl cAMP, forskolin and forskolin plus 1-isobutyl-3-methylxanthine (IBMX), but decreased by the adenyl cyclase inhibitor SQ22536 which can reduce intracellular cAMP levels. Exogenous GFP-tagged NTE activity was not affected by changes in intracellular cAMP. NTE protein levels were up-regulated by the cAMP-elevating reagents and down-regulated by the inhibitor. The effect of the adenyl cyclase activator forskolin on NTE protein and mRNA levels was blocked by pretreatment with the protein kinase A (PKA) activity inhibitor H89. In addition, we found that changes in GPC, but not PC, levels were correlated with cAMP induced changes in NTE activity. These results are the first evidence that cAMP/PKA signals regulate NTE expression and GPC content in mammalian cells.

Gary B. Quistad - One of the best experts on this subject based on the ideXlab platform.

  • evidence that mouse brain neuropathy target esterase is a lysophospholipase
    Proceedings of the National Academy of Sciences of the United States of America, 2003
    Co-Authors: Gary B. Quistad, Christopher J. Winrow, Carrolee Barlow, Susan E Sparks, John E. Casida
    Abstract:

    Abstract Neuropathy target esterase (NTE) is inhibited by several organophosphorus (OP) pesticides, chemical warfare agents, lubricants, and plasticizers, leading to OP-induced delayed neuropathy in people (>30,000 cases of human paralysis) and hens (the best animal model for this demyelinating disease). The active site region of NTE as a recombinant protein preferentially hydrolyzes lysolecithin, suggesting that this enzyme may be a type of lysophospholipase (LysoPLA) with lysolecithin as its physiological substrate. This hypothesis is tested here in mouse brain by replacing the phenyl valerate substrate of the standard NTE assay with lysolecithin for an “NTE-LysoPLA” assay with four important findings. First, NTE-LysoPLA activity, as the NTE activity, is 41–45% lower in Nte-haploinsufficient transgenic mice than in their wild-type littermates. Second, the potency of six delayed neurotoxicants or toxicants as in vitro inhibitors varies from IC50 0.02 to 13,000 nM and is essentially the same for NTE-LysoPLA and NTE (r2 = 0.98). Third, the same six delayed toxicants administered i.p. to mice at multiple doses inhibit brain NTE-LysoPLA and NTE to the same extent (r2 = 0.90). Finally, their in vivo inhibition of brain NTE-LysoPLA generally correlates with delayed toxicity. Therefore, OP-induced delayed toxicity in mice, and possibly the hyperactivity associated with NTE deficiency, may be due to NTE-LysoPLA inhibition, leading to localized accumulation of lysolecithin, a known demyelinating agent and receptor-mediated signal transducer. This mouse model has some features in common with OP-induced delayed neuropathy in hens and people but differs in the neuropathological signs and apparently the requirement for NTE aging.

  • Loss of neuropathy target esterase in mice links organophosphate exposure to hyperactivity
    Nature Genetics, 2003
    Co-Authors: Christopher J. Winrow, Matthew L. Hemming, Duane M. Allen, Gary B. Quistad, John E. Casida, Carrolee Barlow
    Abstract:

    Neuropathy target esterase (NTE) is involved in neural development and is the target for neurodegeneration induced by selected organophosphorus pesticides and chemical warfare agents. We generated mice with disruptions in Nte , the gene encoding NTE. Nte ^ −/− mice die after embryonic day 8, and Nte ^ +/− mice have lower activity of Nte in the brain and higher mortality when exposed to the Nte-inhibiting compound ethyl octylphosphonofluoridate (EOPF) than do wild-type mice. Nte ^ +/− and wild-type mice treated with 1 mg per kg of body weight of EOPF have elevated motor activity, showing that even minor reduction of Nte activity leads to hyperactivity. These studies show that genetic or chemical reduction of Nte activity results in a neurological phenotype of hyperactivity in mammals and indicate that EOPF toxicity occurs directly through inhibition of Nte without the requirement for Nte gain of function or aging.

  • neuropathy target esterase of hen brain active site reactions with 2 octyl 3h octyl 4h 1 3 2 benzodioxaphosphorin 2 oxide and 2 octyl 4h 1 3 2 aryl 3h benzodioxaphosphorin 2 oxide
    Journal of Neurochemistry, 2002
    Co-Authors: Minoru Yoshida, Gary B. Quistad, Motohiro Tomizawa, John E. Casida
    Abstract:

    2-Octyl-4H-1,3,2-benzodioxaphosphorin 2-oxide (octyl-BDPO) is one of the most potent inhibitors known for neuropathy target esterase (NTE) of hen brain with 50% inhibition at 0.2 nM. Two NTE-like proteins, i.e., resistant to paraoxon and sensitive to mipafox, of approximately 155 and approximately 119 kDa (designated NTE-155 and NTE-119, respectively) are labeled by [octyl-3H]octyl-BDPO and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Labeling with [aryl-3H]octyl-BDPO is only approximately 15% of that with [octyl-3H]octyl-BDPO, indicating that the majority of the phosphorylated NTE undergoes aging with only a small proportion of nonaged target or intramolecular group transfer ("alkylation"). NTE-155 and NTE-119 have the same kinetic constants and maximal number of phosphorylation sites, equivalent for each of them to 26 fmol/mg of protein and totaling at least 0.44-1.2 micrograms of NTE protein/g of brain. Structure-activity investigations involving 17 combinations of organophosphorus (OP) compounds of varied chemical type, stereochemistry, and concentration establish an excellent correlation (r = 0.95) between inhibition of NTE activity and protein labeling and thereby the toxicological relevance of these assays, which equally implicate NTE-155 and NTE-119 (probably an autolysis product of NTE-155) as target in OP-induced delayed neuropathy. [octyl-3H]-Octyl-BDPO is an improved probe for NTE in terms of its potency, reactivity, selectivity, and the formation of 3H-labeled NTE with a stable phosphorus-carbon bond.