Observation Distribution

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 171849 Experts worldwide ranked by ideXlab platform

Yan Ni - One of the best experts on this subject based on the ideXlab platform.

  • gsimp a gibbs sampler based left censored missing value imputation approach for metabolomics studies
    PLOS Computational Biology, 2018
    Co-Authors: Jingye Wang, Tianlu Chen, Yan Ni
    Abstract:

    Left-censored missing values commonly exist in targeted metabolomics datasets and can be considered as missing not at random (MNAR). Improper data processing procedures for missing values will cause adverse impacts on subsequent statistical analyses. However, few imputation methods have been developed and applied to the situation of MNAR in the field of metabolomics. Thus, a practical left-censored missing value imputation method is urgently needed. We developed an iterative Gibbs sampler based left-censored missing value imputation approach (GSimp). We compared GSimp with other three imputation methods on two real-world targeted metabolomics datasets and one simulation dataset using our imputation evaluation pipeline. The results show that GSimp outperforms other imputation methods in terms of imputation accuracy, Observation Distribution, univariate and multivariate analyses, and statistical sensitivity. Additionally, a parallel version of GSimp was developed for dealing with large scale metabolomics datasets. The R code for GSimp, evaluation pipeline, tutorial, real-world and simulated targeted metabolomics datasets are available at: https://github.com/WandeRum/GSimp.

  • gsimp a gibbs sampler based left censored missing value imputation approach for metabolomics studies
    bioRxiv, 2017
    Co-Authors: Jingye Wang, Tianlu Chen, Yan Ni
    Abstract:

    Left-censored missing values commonly exist in targeted metabolomics datasets and can be considered as missing not at random (MNAR). Improper data processing procedures for missing values will cause adverse impacts on subsequent statistical analyses. However, few imputation methods have been developed and applied to the situation of MNAR in the field of metabolomics. Thus, a practical left-censored missing value imputation method is urgently needed. We have developed an iterative Gibbs sampler based left-censored missing value imputation approach (GSimp). We compared GSimp with other three imputation methods on two real-world targeted metabolomics datasets and one simulation dataset using our imputation evaluation pipeline. The results show that GSimp outperforms other imputation methods in terms of imputation accuracy, Observation Distribution, univariate and multivariate analyses, and statistical sensitivity. The R code for GSimp, evaluation pipeline, vignette, real-world and simulated targeted metabolomics datasets are available at: https://github.com/WandeRum/GSimp.

Pavel V Shevchenko - One of the best experts on this subject based on the ideXlab platform.

  • infection rate models for covid 19 model risk and public health news sentiment exposure adjustments
    PLOS ONE, 2021
    Co-Authors: Ioannis Chalkiadakis, Hongxuan Yan, Gareth W Peters, Pavel V Shevchenko
    Abstract:

    During the COVID-19 pandemic, governments globally had to impose severe contact restriction measures and social mobility limitations in order to limit the exposure of the population to COVID-19. These public health policy decisions were informed by statistical models for infection rates in national populations. In this work, we are interested in modelling the temporal evolution of national-level infection counts for the United Kingdom (UK-Wales, England, Scotland), Germany (GM), Italy (IT), Spain (SP), Japan (JP), Australia (AU) and the United States (US). We model the national-level infection counts for the period January 2020 to January 2021, thus covering both the pre- and post-vaccine roll-out periods, in order to better understand the most reliable model structure for the COVID-19 epidemic growth curve. We achieve this by exploring a variety of stochastic population growth models and comparing their calibration, with respect to in-sample fitting and out-of-sample forecasting, both with and without exposure adjustment, to the most widely used and reported growth model, the Gompertz population model, often referred to in the public health policy discourse during the COVID-19 pandemic. Model risk as we explore it in this work manifests in the inability to adequately capture the behaviour of the disease progression growth rate curve. Therefore, our concept of model risk is formed relative to the standard reference Gompertz model used by decision-makers, and then we can characterise model risk mathematically as having two components: the dispersion of the Observation Distribution, and the structure of the intensity function over time for cumulative counts of new infections daily (i.e. the force of infection) attributed directly to the COVID-19 pandemic. We also explore how to incorporate in these population models the effect that governmental interventions have had on the number of infected cases. This is achieved through the development of an exposure adjustment to the force of infection comprised of a purpose-built sentiment index, which we construct from various authoritative public health news reporting. The news reporting media we employed were the New York Times, the Guardian, the Telegraph, Reuters global blog, as well as national and international health authorities: the European Centre for Disease Prevention and Control, the United Nations Economic Commission for Europe, the United States Centres for Disease Control and Prevention, and the World Health Organisation. We find that exposure adjustments that incorporate sentiment are better able to calibrate to early stages of infection spread in all countries under study.

  • infection rate models for covid 19 model risk and public health news sentiment exposure adjustments
    Social Science Research Network, 2021
    Co-Authors: Ioannis Chalkiadakis, Hongxuan Yan, Gareth W Peters, Pavel V Shevchenko
    Abstract:

    During the COVID-19 pandemic, governments globally had to impose severe contact restriction measures and social mobility limitations in order to limit the exposure of the population to COVID-19. These public health policy decisions were informed by statistical models for infection rates in national populations. In this work we are interested in modelling the temporal evolution of national level infection counts for a variety of countries, in order to better understand the most reliable model structure for the COVID-19 epidemic growth curve. We will achieve this by exploring a variety of stochastic population growth models and comparing their calibration to the most widely used and reported growth model, the Gompertz population model, often referred to in the public health policy discourse during the COVID-19 pandemic. Model risk as we explore it in this work manifests in the inability to adequately capture the behaviour of the disease progression growth rate curve. Therefore, our concept of model risk is formed relative to the standard reference used by decision makers, the Gompertz model, and then we can characterize model risk mathematically as having two components: the dispersion of the Observation Distribution, and the structure of the intensity function over time for cumulative counts of new infections daily (i.e. the force of infection) attributed directly to the COVID-19 pandemic. We also explore how to incorporate in these population models the effect that governmental interventions have had on the number of infected cases. This is achieved through development of an exposure adjustment to the force of infection comprised of a purpose built sentiment index constructed from a variety of authoritative public health reporting. We find that exposure adjustments that incorporate sentiment are better able to calibrate to early stages of infection spread in all countries under study.

Jingye Wang - One of the best experts on this subject based on the ideXlab platform.

  • gsimp a gibbs sampler based left censored missing value imputation approach for metabolomics studies
    PLOS Computational Biology, 2018
    Co-Authors: Jingye Wang, Tianlu Chen, Yan Ni
    Abstract:

    Left-censored missing values commonly exist in targeted metabolomics datasets and can be considered as missing not at random (MNAR). Improper data processing procedures for missing values will cause adverse impacts on subsequent statistical analyses. However, few imputation methods have been developed and applied to the situation of MNAR in the field of metabolomics. Thus, a practical left-censored missing value imputation method is urgently needed. We developed an iterative Gibbs sampler based left-censored missing value imputation approach (GSimp). We compared GSimp with other three imputation methods on two real-world targeted metabolomics datasets and one simulation dataset using our imputation evaluation pipeline. The results show that GSimp outperforms other imputation methods in terms of imputation accuracy, Observation Distribution, univariate and multivariate analyses, and statistical sensitivity. Additionally, a parallel version of GSimp was developed for dealing with large scale metabolomics datasets. The R code for GSimp, evaluation pipeline, tutorial, real-world and simulated targeted metabolomics datasets are available at: https://github.com/WandeRum/GSimp.

  • gsimp a gibbs sampler based left censored missing value imputation approach for metabolomics studies
    bioRxiv, 2017
    Co-Authors: Jingye Wang, Tianlu Chen, Yan Ni
    Abstract:

    Left-censored missing values commonly exist in targeted metabolomics datasets and can be considered as missing not at random (MNAR). Improper data processing procedures for missing values will cause adverse impacts on subsequent statistical analyses. However, few imputation methods have been developed and applied to the situation of MNAR in the field of metabolomics. Thus, a practical left-censored missing value imputation method is urgently needed. We have developed an iterative Gibbs sampler based left-censored missing value imputation approach (GSimp). We compared GSimp with other three imputation methods on two real-world targeted metabolomics datasets and one simulation dataset using our imputation evaluation pipeline. The results show that GSimp outperforms other imputation methods in terms of imputation accuracy, Observation Distribution, univariate and multivariate analyses, and statistical sensitivity. The R code for GSimp, evaluation pipeline, vignette, real-world and simulated targeted metabolomics datasets are available at: https://github.com/WandeRum/GSimp.

Ioannis Chalkiadakis - One of the best experts on this subject based on the ideXlab platform.

  • infection rate models for covid 19 model risk and public health news sentiment exposure adjustments
    PLOS ONE, 2021
    Co-Authors: Ioannis Chalkiadakis, Hongxuan Yan, Gareth W Peters, Pavel V Shevchenko
    Abstract:

    During the COVID-19 pandemic, governments globally had to impose severe contact restriction measures and social mobility limitations in order to limit the exposure of the population to COVID-19. These public health policy decisions were informed by statistical models for infection rates in national populations. In this work, we are interested in modelling the temporal evolution of national-level infection counts for the United Kingdom (UK-Wales, England, Scotland), Germany (GM), Italy (IT), Spain (SP), Japan (JP), Australia (AU) and the United States (US). We model the national-level infection counts for the period January 2020 to January 2021, thus covering both the pre- and post-vaccine roll-out periods, in order to better understand the most reliable model structure for the COVID-19 epidemic growth curve. We achieve this by exploring a variety of stochastic population growth models and comparing their calibration, with respect to in-sample fitting and out-of-sample forecasting, both with and without exposure adjustment, to the most widely used and reported growth model, the Gompertz population model, often referred to in the public health policy discourse during the COVID-19 pandemic. Model risk as we explore it in this work manifests in the inability to adequately capture the behaviour of the disease progression growth rate curve. Therefore, our concept of model risk is formed relative to the standard reference Gompertz model used by decision-makers, and then we can characterise model risk mathematically as having two components: the dispersion of the Observation Distribution, and the structure of the intensity function over time for cumulative counts of new infections daily (i.e. the force of infection) attributed directly to the COVID-19 pandemic. We also explore how to incorporate in these population models the effect that governmental interventions have had on the number of infected cases. This is achieved through the development of an exposure adjustment to the force of infection comprised of a purpose-built sentiment index, which we construct from various authoritative public health news reporting. The news reporting media we employed were the New York Times, the Guardian, the Telegraph, Reuters global blog, as well as national and international health authorities: the European Centre for Disease Prevention and Control, the United Nations Economic Commission for Europe, the United States Centres for Disease Control and Prevention, and the World Health Organisation. We find that exposure adjustments that incorporate sentiment are better able to calibrate to early stages of infection spread in all countries under study.

  • infection rate models for covid 19 model risk and public health news sentiment exposure adjustments
    Social Science Research Network, 2021
    Co-Authors: Ioannis Chalkiadakis, Hongxuan Yan, Gareth W Peters, Pavel V Shevchenko
    Abstract:

    During the COVID-19 pandemic, governments globally had to impose severe contact restriction measures and social mobility limitations in order to limit the exposure of the population to COVID-19. These public health policy decisions were informed by statistical models for infection rates in national populations. In this work we are interested in modelling the temporal evolution of national level infection counts for a variety of countries, in order to better understand the most reliable model structure for the COVID-19 epidemic growth curve. We will achieve this by exploring a variety of stochastic population growth models and comparing their calibration to the most widely used and reported growth model, the Gompertz population model, often referred to in the public health policy discourse during the COVID-19 pandemic. Model risk as we explore it in this work manifests in the inability to adequately capture the behaviour of the disease progression growth rate curve. Therefore, our concept of model risk is formed relative to the standard reference used by decision makers, the Gompertz model, and then we can characterize model risk mathematically as having two components: the dispersion of the Observation Distribution, and the structure of the intensity function over time for cumulative counts of new infections daily (i.e. the force of infection) attributed directly to the COVID-19 pandemic. We also explore how to incorporate in these population models the effect that governmental interventions have had on the number of infected cases. This is achieved through development of an exposure adjustment to the force of infection comprised of a purpose built sentiment index constructed from a variety of authoritative public health reporting. We find that exposure adjustments that incorporate sentiment are better able to calibrate to early stages of infection spread in all countries under study.

Tianlu Chen - One of the best experts on this subject based on the ideXlab platform.

  • gsimp a gibbs sampler based left censored missing value imputation approach for metabolomics studies
    PLOS Computational Biology, 2018
    Co-Authors: Jingye Wang, Tianlu Chen, Yan Ni
    Abstract:

    Left-censored missing values commonly exist in targeted metabolomics datasets and can be considered as missing not at random (MNAR). Improper data processing procedures for missing values will cause adverse impacts on subsequent statistical analyses. However, few imputation methods have been developed and applied to the situation of MNAR in the field of metabolomics. Thus, a practical left-censored missing value imputation method is urgently needed. We developed an iterative Gibbs sampler based left-censored missing value imputation approach (GSimp). We compared GSimp with other three imputation methods on two real-world targeted metabolomics datasets and one simulation dataset using our imputation evaluation pipeline. The results show that GSimp outperforms other imputation methods in terms of imputation accuracy, Observation Distribution, univariate and multivariate analyses, and statistical sensitivity. Additionally, a parallel version of GSimp was developed for dealing with large scale metabolomics datasets. The R code for GSimp, evaluation pipeline, tutorial, real-world and simulated targeted metabolomics datasets are available at: https://github.com/WandeRum/GSimp.

  • gsimp a gibbs sampler based left censored missing value imputation approach for metabolomics studies
    bioRxiv, 2017
    Co-Authors: Jingye Wang, Tianlu Chen, Yan Ni
    Abstract:

    Left-censored missing values commonly exist in targeted metabolomics datasets and can be considered as missing not at random (MNAR). Improper data processing procedures for missing values will cause adverse impacts on subsequent statistical analyses. However, few imputation methods have been developed and applied to the situation of MNAR in the field of metabolomics. Thus, a practical left-censored missing value imputation method is urgently needed. We have developed an iterative Gibbs sampler based left-censored missing value imputation approach (GSimp). We compared GSimp with other three imputation methods on two real-world targeted metabolomics datasets and one simulation dataset using our imputation evaluation pipeline. The results show that GSimp outperforms other imputation methods in terms of imputation accuracy, Observation Distribution, univariate and multivariate analyses, and statistical sensitivity. The R code for GSimp, evaluation pipeline, vignette, real-world and simulated targeted metabolomics datasets are available at: https://github.com/WandeRum/GSimp.