Omega Agatoxin

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 1257 Experts worldwide ranked by ideXlab platform

Hans-georg Schaible - One of the best experts on this subject based on the ideXlab platform.

  • ω Agatoxin iva a p type calcium channel antagonist reduces nociceptive processing in spinal cord neurons with input from the inflamed but not from the normal knee joint an electrophysiological study in the rat in vivo
    European Journal of Neuroscience, 1997
    Co-Authors: J. Nebe, Horacio Vanegas, Volker Neugebauer, Hans-georg Schaible
    Abstract:

    High threshold voltage-dependent P- and Q-type calcium channels are involved in neurotransmitter release. In order to investigate the role of P- and Q-type calcium channels in the mechanosensory (nociceptive) processing in the spinal cord, their participation in the responses of spinal wide-dynamic-range neurons to innocuous and noxious mechanical stimulation of the knee and ankle joints was studied in 30 anaesthetized rats. The knee was either normal or acutely inflamed by kaolin/carrageenan. During the topical application of Omega-Agatoxin IVA (P-type channel antagonist, 0.1 microM) onto the dorsal surface of the spinal cord, the responses to innocuous and noxious pressure applied to the normal knee were increased to respectively 124 +/- 42% and 114 +/- 23% of predrug values (mean +/- SD, P < 0.05, 14 neurons). By contrast, in rats with an inflamed knee, the responses to innocuous and noxious pressure applied to the knee were reduced to respectively 72 +/- 19 and 73 +/- 22% of baseline (mean +/- SD, P < 0.01, 13 neurons). In the same neurons, Omega-Agatoxin IVA slightly increased the responses to pressure on the non-inflamed ankle whether the knee was normal or inflamed. Thus P-type calcium channels seem to acquire a predominant importance in the excitation of spinal cord neurons by mechanosensory input from inflamed tissue and hence in the generation of inflammatory pain. By contrast, the Q-type channel antagonist, Omega-conotoxin MVIIC (1 or 100 microM), had no significant effect upon responses to innocuous or noxious pressure applied to either normal or inflamed knees (25 neurons).

  • ω‐Agatoxin IVA, a P‐Type Calcium Channel Antagonist, Reduces Nociceptive Processing in Spinal Cord Neurons with Input From the Inflamed But Not From the Normal Knee Joint — An Electrophysiological Study in the Rat In Vivo
    The European journal of neuroscience, 1997
    Co-Authors: J. Nebe, Horacio Vanegas, Volker Neugebauer, Hans-georg Schaible
    Abstract:

    High threshold voltage-dependent P- and Q-type calcium channels are involved in neurotransmitter release. In order to investigate the role of P- and Q-type calcium channels in the mechanosensory (nociceptive) processing in the spinal cord, their participation in the responses of spinal wide-dynamic-range neurons to innocuous and noxious mechanical stimulation of the knee and ankle joints was studied in 30 anaesthetized rats. The knee was either normal or acutely inflamed by kaolin/carrageenan. During the topical application of Omega-Agatoxin IVA (P-type channel antagonist, 0.1 microM) onto the dorsal surface of the spinal cord, the responses to innocuous and noxious pressure applied to the normal knee were increased to respectively 124 +/- 42% and 114 +/- 23% of predrug values (mean +/- SD, P < 0.05, 14 neurons). By contrast, in rats with an inflamed knee, the responses to innocuous and noxious pressure applied to the knee were reduced to respectively 72 +/- 19 and 73 +/- 22% of baseline (mean +/- SD, P < 0.01, 13 neurons). In the same neurons, Omega-Agatoxin IVA slightly increased the responses to pressure on the non-inflamed ankle whether the knee was normal or inflamed. Thus P-type calcium channels seem to acquire a predominant importance in the excitation of spinal cord neurons by mechanosensory input from inflamed tissue and hence in the generation of inflammatory pain. By contrast, the Q-type channel antagonist, Omega-conotoxin MVIIC (1 or 100 microM), had no significant effect upon responses to innocuous or noxious pressure applied to either normal or inflamed knees (25 neurons).

Wim J.j.m. Scheenen - One of the best experts on this subject based on the ideXlab platform.

  • Melanotrope cells of Xenopus laevis express multiple types of high-voltage-activated Ca2+ channels
    Journal of Neuroendocrinology, 2005
    Co-Authors: Hongyan Zhang, Michiel Langeslag, M. Voncken, Eric W. Roubos, Wim J.j.m. Scheenen
    Abstract:

    Pituitary melanotrope cells are neuroendocrine signal transducing cells that translate physiological stimuli into adaptive hormonal responses. In this translation process, Ca2+ channels play essential roles. We have characterised which types of Ca2+ current are present in melanotropes of the amphibian Xenopus laevis, using whole-cell, voltage-clamp, patch-clamp experiments and specific blockers of the various current types. Running an activation current-voltage relationship protocol from a holding potential (HP) of -80 mV/or -110 mV, shows that Xenopus melanotropes possess only high-voltage activated (HVA) Ca2+ currents. Steady-state inactivation protocols reveal that no inactivation occurs at -80 mV, whereas 30% of the current is inactivated at -30 mV. We determined the contribution of individual channel types to the total HVA Ca2+ current, examining the effect of each channel blocker at an HP of -80 mV and -30 mV. At -80 mV, Omega-conotoxin GVIA, Omega-Agatoxin IVA, nifedipine and SNX-482 inhibit Ca2+ currents by 21.8 +/- 4.1%, 26.1 +/- 3.1%, 24.2 +/- 2.4% and 17.9 +/- 4.7%, respectively. At -30 mV, Omega-conotoxin GVIA, nifedipine and Omega-Agatoxin IVA inhibit Ca2+ currents by 33.8 +/- 3.0, 24.2 +/- 2.6 and 16.0 +/- 2.8%, respectively, demonstrating that these blockers substantially inhibit part of the Ca2+ current, independently from the HP. We have previously demonstrated that Omega-conotoxin GVIA can block Ca2+ oscillations and steps. We now show that nifedipine and Omega-Agatoxin IVA do not affect the intracellular Ca2+ dynamics, whereas SNX-482 reduces the Ca2+ step amplitude. We conclude that Xenopus melanotrope cells express all four major types of HVA Ca2+ channel, as well as the resulting currents, but no low-voltage activated channels. The results provide the basis for future studies on the complex regulation of channel-mediated Ca2+ influxes into this neuroendocrine cell type as a function of its role in the animal's adaptation to external challenges.

Y Kirino - One of the best experts on this subject based on the ideXlab platform.

  • Differential roles of two types of voltage-gated Ca2+ channels in the dendrites of rat cerebellar Purkinje neurons.
    Brain research, 1998
    Co-Authors: S Watanabe, H Takagi, T Miyasho, M Inoue, Y Kirino, Y Kudo, H Miyakawa
    Abstract:

    The distribution and function of voltage-gated Ca2+ channels in Purkinje neurons in rat cerebellar slices were studied using simultaneous Ca2+ imaging and whole-cell patch clamp recording techniques. Voltage-gated Ca2+ channels were activated by applying depolarizing voltage steps through the pipette attached at the soma in a voltage-clamp mode in the presence of tetrodotoxin. Poor space clamp due to extensive arborization of the dendrites allowed the dendrites to fire Ca2+ spikes. Ca2+ imaging with Fura-2 injected through the pipette, showed a steady [Ca2+]i increase at the soma and transient, spike-linked [Ca2+]i jumps in the dendrites. Omega-Agatoxin-IVA (200 nM) abolished the depolarization-induced Ca2+ spikes, the spike-linked [Ca2+]i increase in the dendrites, and the steady [Ca2+]i increase at the soma. Omega-Conotoxin-GVIA (5 microM) and nifedipine (3 microM) had no significant effect on the depolarization-induced responses. In the presence of 4-aminopyridine(2 mM) and Omega-Agatoxin-IVA, transient [Ca2+]i increases remained in the dendrites. Low concentrations of Ni2+(100 microM) reversibly suppressed this [Ca2+]i increase. The voltage for half-maximal activation and inactivation of this component were lower than -50 mV and -31 mV, respectively. In normal conditions, low concentration of Ni2+ slowed the onset of the Ca2+ spike without changing the time course of the spikes or the amplitude of the accompanying [Ca2+]i increase. These results show that Omega-Agatoxin-IVA-sensitive Ca2+ channels are distributed both in the soma and the dendrites, and are responsible for dendritic Ca2+ spikes, whereas low-voltage activated, Ni2+-sensitive Ca2+ channels are distributed in the whole dendrites including both thick and fine branches, and provide boosting current for spike generation.

  • Lambert-Eaton syndrome antibodies inhibit acetylcholine release and P/Q-type Ca2+ channels in electric ray nerve endings.
    The Journal of physiology, 1998
    Co-Authors: Y Satoh, N Hirashima, H Tokumaru, M P Takahashi, J Kang, M P Viglione, Y I Kim, Y Kirino
    Abstract:

    1. The types of voltage-dependent calcium channels (VDCCs) present in the cholinergic terminals isolated from the electric organ of the ray, Narke japonica, were characterized on the basis of their pharmacological sensitivity to specific antagonists. Inhibition of these channel types by autoantibodies from patients with the Lambert-Eaton syndrome (LES) was then studied to determine the specificity of the pathogenic IgG. 2. In normal untreated synaptosomal preparations, maximal doses of N- and P and/or Q-type Ca2+ channel antagonists, Omega-conotoxin GVIA and Omega-Agatoxin IVA, inhibited depolarization-evoked ACh release by 47 % and 43 %, respectively. Calciseptine, an L-type VDCC antagonist, caused a 20 % reduction in the release. This indicates that the exocytotic release process is predominantly mediated by N- and P/Q-type VDCCs. 3. LES IgG or sera caused an inhibition of ACh release by 39-45 % in comparison with the control antibody-treated preparations. The ionomycin-induced ACh release, however, was not altered by the antibodies. Additionally, the same LES antibodies inhibited whole-cell calcium currents (ICa) in bovine adrenal chromaffin cells. Thus, the pathogenic antibodies exert their action on VDCCs present in the synaptosomes. 4. The efficacy of three Ca2+ channel antagonists in blocking ACh release was determined in preparations pretreated with LES IgG. Omega-Agatoxin IVA produced only an additional 3-5 % reduction in release beyond that obtained with LES antibodies. Despite the pretreatment with LES IgG, Omega-conotoxin GVIA and calciseptine inhibited the release to nearly their control levels. 5. These results indicate that LES antibodies mainly downregulate P/Q-type Ca2+ channels which contribute to presynaptic transmitter release from the cholinergic nerve terminals of electric organ. 6. The present findings are consistent with the hypothesis that P/Q-type VDCCs at the neuromuscular junction are the target of LES antibodies and that their inhibition by the antibodies produces the characteristic neuromuscular defect in this disease.

J. Nebe - One of the best experts on this subject based on the ideXlab platform.

  • ω Agatoxin iva a p type calcium channel antagonist reduces nociceptive processing in spinal cord neurons with input from the inflamed but not from the normal knee joint an electrophysiological study in the rat in vivo
    European Journal of Neuroscience, 1997
    Co-Authors: J. Nebe, Horacio Vanegas, Volker Neugebauer, Hans-georg Schaible
    Abstract:

    High threshold voltage-dependent P- and Q-type calcium channels are involved in neurotransmitter release. In order to investigate the role of P- and Q-type calcium channels in the mechanosensory (nociceptive) processing in the spinal cord, their participation in the responses of spinal wide-dynamic-range neurons to innocuous and noxious mechanical stimulation of the knee and ankle joints was studied in 30 anaesthetized rats. The knee was either normal or acutely inflamed by kaolin/carrageenan. During the topical application of Omega-Agatoxin IVA (P-type channel antagonist, 0.1 microM) onto the dorsal surface of the spinal cord, the responses to innocuous and noxious pressure applied to the normal knee were increased to respectively 124 +/- 42% and 114 +/- 23% of predrug values (mean +/- SD, P < 0.05, 14 neurons). By contrast, in rats with an inflamed knee, the responses to innocuous and noxious pressure applied to the knee were reduced to respectively 72 +/- 19 and 73 +/- 22% of baseline (mean +/- SD, P < 0.01, 13 neurons). In the same neurons, Omega-Agatoxin IVA slightly increased the responses to pressure on the non-inflamed ankle whether the knee was normal or inflamed. Thus P-type calcium channels seem to acquire a predominant importance in the excitation of spinal cord neurons by mechanosensory input from inflamed tissue and hence in the generation of inflammatory pain. By contrast, the Q-type channel antagonist, Omega-conotoxin MVIIC (1 or 100 microM), had no significant effect upon responses to innocuous or noxious pressure applied to either normal or inflamed knees (25 neurons).

  • ω‐Agatoxin IVA, a P‐Type Calcium Channel Antagonist, Reduces Nociceptive Processing in Spinal Cord Neurons with Input From the Inflamed But Not From the Normal Knee Joint — An Electrophysiological Study in the Rat In Vivo
    The European journal of neuroscience, 1997
    Co-Authors: J. Nebe, Horacio Vanegas, Volker Neugebauer, Hans-georg Schaible
    Abstract:

    High threshold voltage-dependent P- and Q-type calcium channels are involved in neurotransmitter release. In order to investigate the role of P- and Q-type calcium channels in the mechanosensory (nociceptive) processing in the spinal cord, their participation in the responses of spinal wide-dynamic-range neurons to innocuous and noxious mechanical stimulation of the knee and ankle joints was studied in 30 anaesthetized rats. The knee was either normal or acutely inflamed by kaolin/carrageenan. During the topical application of Omega-Agatoxin IVA (P-type channel antagonist, 0.1 microM) onto the dorsal surface of the spinal cord, the responses to innocuous and noxious pressure applied to the normal knee were increased to respectively 124 +/- 42% and 114 +/- 23% of predrug values (mean +/- SD, P < 0.05, 14 neurons). By contrast, in rats with an inflamed knee, the responses to innocuous and noxious pressure applied to the knee were reduced to respectively 72 +/- 19 and 73 +/- 22% of baseline (mean +/- SD, P < 0.01, 13 neurons). In the same neurons, Omega-Agatoxin IVA slightly increased the responses to pressure on the non-inflamed ankle whether the knee was normal or inflamed. Thus P-type calcium channels seem to acquire a predominant importance in the excitation of spinal cord neurons by mechanosensory input from inflamed tissue and hence in the generation of inflammatory pain. By contrast, the Q-type channel antagonist, Omega-conotoxin MVIIC (1 or 100 microM), had no significant effect upon responses to innocuous or noxious pressure applied to either normal or inflamed knees (25 neurons).

A H Dickenson - One of the best experts on this subject based on the ideXlab platform.

  • Effects of spinally delivered N- and P-type voltage-dependent calcium channel antagonists on dorsal horn neuronal responses in a rat model of neuropathy.
    Pain, 2001
    Co-Authors: E A Matthews, A H Dickenson
    Abstract:

    Neuropathic pain, due to peripheral nerve damage, can include allodynia (perception of innocuous stimuli as being painful), hyperalgesia (increased sensitivity to noxious stimuli) and spontaneous pain, often accompanied by sensory deficits. Plasticity in transmission and modulatory systems are implicated in the underlying mechanisms. The Kim and Chung rodent model of neuropathy (Kim and Chung, Pain 50 (1992) 355) employed here involves unilateral tight ligation of two (L5 and L6) of the three (L4, L5, and L6) spinal nerves of the sciatic nerve and reproducibly induced mechanical and cold allodynia in the ipsilateral hindpaw over the 14 day post-operative period. In vivo electrophysiological techniques have then been used to record the response of dorsal horn neurones to innocuous and noxious electrical and natural (mechanical and thermal) stimuli after spinal nerve ligation (SNL). Activation of voltage-dependent calcium channels (VDCCs) is critical for neurotransmitter release and neuronal excitability, and antagonists can be antinociceptive. Here, for the first time, the effect of N- and P-type VDCC antagonists (Omega-conotoxin-GVIA and Omega-Agatoxin-IVA, respectively) on the evoked dorsal horn neuronal responses after neuropathy have been investigated. Spinal Omega-conotoxin-GVIA (0.1-3.2 microg) produced prolonged inhibitions of both the electrically- and low- and high-intensity naturally-evoked neuronal responses in SNL and control rats. Spinal Omega-Agatoxin-IVA (0.1-3.2 microg) also had an inhibitory effect but to a lesser extent. After neuropathy the potency of Omega-conotoxin-GVIA was increased at lower doses in comparison to control. This indicates an altered role for N-type but not P-type VDCCs in sensory transmission after neuropathy and selective plasticity in these channels after nerve injury. Both pre- and post-synaptic VDCCs appear to be important.