Orthosilicate

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 6726 Experts worldwide ranked by ideXlab platform

Lewis Semprini - One of the best experts on this subject based on the ideXlab platform.

  • long term cometabolic transformation of 1 1 1 trichloroethane and 1 4 dioxane by rhodococcus rhodochrous atcc 21198 grown on alcohols slowly produced by Orthosilicates
    Journal of Contaminant Hydrology, 2021
    Co-Authors: Riley A Murnane, Weijue Chen, Michael R Hyman, Lewis Semprini
    Abstract:

    Abstract Long-term cometabolic transformation of 1,1,1-trichlorethane (1,1,1-TCA) and 1,4-dioxane (1,4-D) was achieved using slow release compounds (SRCs) as growth substrates for pure cultures of Rhodococcus rhodochrous ATCC 21198 (ATCC strain 21,198). Resting cell transformation tests showed 1,4-D transformation occurred without a lag phase for cells grown on 2-butanol, while an induction period of several hours was required for 1-butanol grown cells. These observations were consistent with activity-based labeling patterns for monooxygenase hydroxylase components and specific rates of tetrahydrofuran (THF) degradation. 1,1,1-TCA and 1,4-D degradation rates for alcohol-grown cells were slower than those for cells grown on gaseous alkanes such as isobutane. Batch metabolism and degradation tests were performed, in the presence of 1,1,1-TCA and 1,4-D, with the growth of ATCC strain 21,198 on alcohols produced by the hydrolysis of Orthosilicates. Three Orthosilicates were tested: tetrabutylOrthosilicate (TBOS), tetra-sec-butylOrthosilicate (T2BOS), and tetraisopropoxysilane (T2POS). The measured rates of alcohol release in poisoned controls depended on the Orthosilicate structure with TBOS, which produced a 1° alcohol (1-butanol), hydrolyzing more rapidly than T2POS and T2BOS, that produced the 2° alcohols 2-butanol and 2-propanol, respectively. The Orthosilicates were added as light non-aqueous phase liquids (LNAPLs) with ATCC strain 21,198 and formed dispersed droplets when continuously mixed. Continuous rates of oxygen (O2) consumption and carbon dioxide (CO2) production confirmed alcohol metabolism by ATCC strain 21,198 was occurring. The rates of metabolism (TBOS > T2POS > T2BOS) were consistent with the rates of alcohol release via abiotic hydrolysis. 1,4-D and 1,1,1-TCA were continuously transformed in successive additions by ATCC strain 21,198 over 125 days, with the rates highly correlated with the rates of metabolism. The metabolism of the alcohols was not inhibited by acetylene, while transformation of 1,4-D and 1,1,1-TCA was inhibited by this gas. As acetylene is a potent inactivator of diverse bacterial monooxygenases, these results suggest that monooxygenase activity was required for the observed cometabolic transformations but not for alcohol utilization. Alcohol concentrations in the biologically active reactors were maintained below the levels of detection, indicating they were metabolized rapidly after being produced. Much lower rates of O2 consumption were observed in the reactors containing T2BOS, which has benefits for in-situ bioremediation. The results illustrate the importance of the structure of the SRC when developing passive aerobic cometabolic treatment systems.

  • long term cometabolic transformation of 1 1 1 trichloroethane and 1 4 dioxane by rhodococcus rhodochrous atcc 21198 grown on alcohols slowly produced by Orthosilicates
    Journal of Contaminant Hydrology, 2021
    Co-Authors: Riley A Murnane, Weijue Chen, Michael R Hyman, Lewis Semprini
    Abstract:

    Abstract Long-term cometabolic transformation of 1,1,1-trichlorethane (1,1,1-TCA) and 1,4-dioxane (1,4-D) was achieved using slow release compounds (SRCs) as growth substrates for pure cultures of Rhodococcus rhodochrous ATCC 21198 (ATCC strain 21198). Resting cell transformation tests showed 1,4-D transformation occurred without a lag phase for cells grown on 2-butanol, while an induction period of several hours was required for 1-butanol grown cells. These observations were consistent with activity-based labeling patterns for monooxygenase hydroxylase components and specific rates of tetrahydrofuran (THF) degradation. 1,1,1-TCA and 1,4-D degradation rates for alcohol-grown cells were slower than those for cells grown on gaseous alkanes such as isobutane . Batch metabolism and degradation tests were performed, in the presence of 1,1,1-TCA and 1,4-D, with the growth of ATCC strain 21198 on alcohols produced by the hydrolysis of Orthosilicates. Three Orthosilicates were tested: tetrabutylOrthosilicate (TBOS), tetra- s-butylOrthosilicate (T2BOS), and tetraisopropoxysilane (T2POS). The measured rates of alcohol release in poisoned controls depended on the Orthosilicate structure with TBOS, which produced a 1° alcohol (1-butanol), hydrolyzing more rapidly than T2POS and T2BOS, that produced the 2° alcohols 2-butanol and 2-propanol, respectively. The Orthosilicates were added as light non-aqueous phase liquids (LNAPLs) with ATCC strain 21198 and formed dispersed droplets when continuously mixed. Continuous rates of oxygen (O2) consumption and carbon dioxide (CO2 ) production confirmed alcohol metabolism by ATCC strain 21198 was occurring. The rates of metabolism (TBOS > T2POS > T2BOS) were consistent with the rates of alcohol release via abiotic hydrolysis. 1,4-D and 1,1,1-TCA were continuously transformed in successive additions by ATCC strain 21198 over 125 days, with the rates highly correlated with the rates of metabolism. The metabolism of the alcohols was not inhibited by acetylene , while transformation of 1,4-D and 1,1,1-TCA was inhibited by this gas. As acetylene is a potent inactivator of diverse bacterial monooxygenases, these results suggest that monooxygenase activity was required for the observed cometabolic transformations but not for alcohol utilization. Alcohol concentrations in the biologically active reactors were maintained below the levels of detection, indicating they were metabolized rapidly after being produced. Much lower rates of O 2 consumption were observed in the reactors containing T2BOS, which has benefits for in-situ bioremediation. The results illustrate the importance of the structure of the SRC when developing passive aerobic cometabolic treatment systems.

Riley A Murnane - One of the best experts on this subject based on the ideXlab platform.

  • long term cometabolic transformation of 1 1 1 trichloroethane and 1 4 dioxane by rhodococcus rhodochrous atcc 21198 grown on alcohols slowly produced by Orthosilicates
    Journal of Contaminant Hydrology, 2021
    Co-Authors: Riley A Murnane, Weijue Chen, Michael R Hyman, Lewis Semprini
    Abstract:

    Abstract Long-term cometabolic transformation of 1,1,1-trichlorethane (1,1,1-TCA) and 1,4-dioxane (1,4-D) was achieved using slow release compounds (SRCs) as growth substrates for pure cultures of Rhodococcus rhodochrous ATCC 21198 (ATCC strain 21,198). Resting cell transformation tests showed 1,4-D transformation occurred without a lag phase for cells grown on 2-butanol, while an induction period of several hours was required for 1-butanol grown cells. These observations were consistent with activity-based labeling patterns for monooxygenase hydroxylase components and specific rates of tetrahydrofuran (THF) degradation. 1,1,1-TCA and 1,4-D degradation rates for alcohol-grown cells were slower than those for cells grown on gaseous alkanes such as isobutane. Batch metabolism and degradation tests were performed, in the presence of 1,1,1-TCA and 1,4-D, with the growth of ATCC strain 21,198 on alcohols produced by the hydrolysis of Orthosilicates. Three Orthosilicates were tested: tetrabutylOrthosilicate (TBOS), tetra-sec-butylOrthosilicate (T2BOS), and tetraisopropoxysilane (T2POS). The measured rates of alcohol release in poisoned controls depended on the Orthosilicate structure with TBOS, which produced a 1° alcohol (1-butanol), hydrolyzing more rapidly than T2POS and T2BOS, that produced the 2° alcohols 2-butanol and 2-propanol, respectively. The Orthosilicates were added as light non-aqueous phase liquids (LNAPLs) with ATCC strain 21,198 and formed dispersed droplets when continuously mixed. Continuous rates of oxygen (O2) consumption and carbon dioxide (CO2) production confirmed alcohol metabolism by ATCC strain 21,198 was occurring. The rates of metabolism (TBOS > T2POS > T2BOS) were consistent with the rates of alcohol release via abiotic hydrolysis. 1,4-D and 1,1,1-TCA were continuously transformed in successive additions by ATCC strain 21,198 over 125 days, with the rates highly correlated with the rates of metabolism. The metabolism of the alcohols was not inhibited by acetylene, while transformation of 1,4-D and 1,1,1-TCA was inhibited by this gas. As acetylene is a potent inactivator of diverse bacterial monooxygenases, these results suggest that monooxygenase activity was required for the observed cometabolic transformations but not for alcohol utilization. Alcohol concentrations in the biologically active reactors were maintained below the levels of detection, indicating they were metabolized rapidly after being produced. Much lower rates of O2 consumption were observed in the reactors containing T2BOS, which has benefits for in-situ bioremediation. The results illustrate the importance of the structure of the SRC when developing passive aerobic cometabolic treatment systems.

  • long term cometabolic transformation of 1 1 1 trichloroethane and 1 4 dioxane by rhodococcus rhodochrous atcc 21198 grown on alcohols slowly produced by Orthosilicates
    Journal of Contaminant Hydrology, 2021
    Co-Authors: Riley A Murnane, Weijue Chen, Michael R Hyman, Lewis Semprini
    Abstract:

    Abstract Long-term cometabolic transformation of 1,1,1-trichlorethane (1,1,1-TCA) and 1,4-dioxane (1,4-D) was achieved using slow release compounds (SRCs) as growth substrates for pure cultures of Rhodococcus rhodochrous ATCC 21198 (ATCC strain 21198). Resting cell transformation tests showed 1,4-D transformation occurred without a lag phase for cells grown on 2-butanol, while an induction period of several hours was required for 1-butanol grown cells. These observations were consistent with activity-based labeling patterns for monooxygenase hydroxylase components and specific rates of tetrahydrofuran (THF) degradation. 1,1,1-TCA and 1,4-D degradation rates for alcohol-grown cells were slower than those for cells grown on gaseous alkanes such as isobutane . Batch metabolism and degradation tests were performed, in the presence of 1,1,1-TCA and 1,4-D, with the growth of ATCC strain 21198 on alcohols produced by the hydrolysis of Orthosilicates. Three Orthosilicates were tested: tetrabutylOrthosilicate (TBOS), tetra- s-butylOrthosilicate (T2BOS), and tetraisopropoxysilane (T2POS). The measured rates of alcohol release in poisoned controls depended on the Orthosilicate structure with TBOS, which produced a 1° alcohol (1-butanol), hydrolyzing more rapidly than T2POS and T2BOS, that produced the 2° alcohols 2-butanol and 2-propanol, respectively. The Orthosilicates were added as light non-aqueous phase liquids (LNAPLs) with ATCC strain 21198 and formed dispersed droplets when continuously mixed. Continuous rates of oxygen (O2) consumption and carbon dioxide (CO2 ) production confirmed alcohol metabolism by ATCC strain 21198 was occurring. The rates of metabolism (TBOS > T2POS > T2BOS) were consistent with the rates of alcohol release via abiotic hydrolysis. 1,4-D and 1,1,1-TCA were continuously transformed in successive additions by ATCC strain 21198 over 125 days, with the rates highly correlated with the rates of metabolism. The metabolism of the alcohols was not inhibited by acetylene , while transformation of 1,4-D and 1,1,1-TCA was inhibited by this gas. As acetylene is a potent inactivator of diverse bacterial monooxygenases, these results suggest that monooxygenase activity was required for the observed cometabolic transformations but not for alcohol utilization. Alcohol concentrations in the biologically active reactors were maintained below the levels of detection, indicating they were metabolized rapidly after being produced. Much lower rates of O 2 consumption were observed in the reactors containing T2BOS, which has benefits for in-situ bioremediation. The results illustrate the importance of the structure of the SRC when developing passive aerobic cometabolic treatment systems.

Michael R Hyman - One of the best experts on this subject based on the ideXlab platform.

  • long term cometabolic transformation of 1 1 1 trichloroethane and 1 4 dioxane by rhodococcus rhodochrous atcc 21198 grown on alcohols slowly produced by Orthosilicates
    Journal of Contaminant Hydrology, 2021
    Co-Authors: Riley A Murnane, Weijue Chen, Michael R Hyman, Lewis Semprini
    Abstract:

    Abstract Long-term cometabolic transformation of 1,1,1-trichlorethane (1,1,1-TCA) and 1,4-dioxane (1,4-D) was achieved using slow release compounds (SRCs) as growth substrates for pure cultures of Rhodococcus rhodochrous ATCC 21198 (ATCC strain 21,198). Resting cell transformation tests showed 1,4-D transformation occurred without a lag phase for cells grown on 2-butanol, while an induction period of several hours was required for 1-butanol grown cells. These observations were consistent with activity-based labeling patterns for monooxygenase hydroxylase components and specific rates of tetrahydrofuran (THF) degradation. 1,1,1-TCA and 1,4-D degradation rates for alcohol-grown cells were slower than those for cells grown on gaseous alkanes such as isobutane. Batch metabolism and degradation tests were performed, in the presence of 1,1,1-TCA and 1,4-D, with the growth of ATCC strain 21,198 on alcohols produced by the hydrolysis of Orthosilicates. Three Orthosilicates were tested: tetrabutylOrthosilicate (TBOS), tetra-sec-butylOrthosilicate (T2BOS), and tetraisopropoxysilane (T2POS). The measured rates of alcohol release in poisoned controls depended on the Orthosilicate structure with TBOS, which produced a 1° alcohol (1-butanol), hydrolyzing more rapidly than T2POS and T2BOS, that produced the 2° alcohols 2-butanol and 2-propanol, respectively. The Orthosilicates were added as light non-aqueous phase liquids (LNAPLs) with ATCC strain 21,198 and formed dispersed droplets when continuously mixed. Continuous rates of oxygen (O2) consumption and carbon dioxide (CO2) production confirmed alcohol metabolism by ATCC strain 21,198 was occurring. The rates of metabolism (TBOS > T2POS > T2BOS) were consistent with the rates of alcohol release via abiotic hydrolysis. 1,4-D and 1,1,1-TCA were continuously transformed in successive additions by ATCC strain 21,198 over 125 days, with the rates highly correlated with the rates of metabolism. The metabolism of the alcohols was not inhibited by acetylene, while transformation of 1,4-D and 1,1,1-TCA was inhibited by this gas. As acetylene is a potent inactivator of diverse bacterial monooxygenases, these results suggest that monooxygenase activity was required for the observed cometabolic transformations but not for alcohol utilization. Alcohol concentrations in the biologically active reactors were maintained below the levels of detection, indicating they were metabolized rapidly after being produced. Much lower rates of O2 consumption were observed in the reactors containing T2BOS, which has benefits for in-situ bioremediation. The results illustrate the importance of the structure of the SRC when developing passive aerobic cometabolic treatment systems.

  • long term cometabolic transformation of 1 1 1 trichloroethane and 1 4 dioxane by rhodococcus rhodochrous atcc 21198 grown on alcohols slowly produced by Orthosilicates
    Journal of Contaminant Hydrology, 2021
    Co-Authors: Riley A Murnane, Weijue Chen, Michael R Hyman, Lewis Semprini
    Abstract:

    Abstract Long-term cometabolic transformation of 1,1,1-trichlorethane (1,1,1-TCA) and 1,4-dioxane (1,4-D) was achieved using slow release compounds (SRCs) as growth substrates for pure cultures of Rhodococcus rhodochrous ATCC 21198 (ATCC strain 21198). Resting cell transformation tests showed 1,4-D transformation occurred without a lag phase for cells grown on 2-butanol, while an induction period of several hours was required for 1-butanol grown cells. These observations were consistent with activity-based labeling patterns for monooxygenase hydroxylase components and specific rates of tetrahydrofuran (THF) degradation. 1,1,1-TCA and 1,4-D degradation rates for alcohol-grown cells were slower than those for cells grown on gaseous alkanes such as isobutane . Batch metabolism and degradation tests were performed, in the presence of 1,1,1-TCA and 1,4-D, with the growth of ATCC strain 21198 on alcohols produced by the hydrolysis of Orthosilicates. Three Orthosilicates were tested: tetrabutylOrthosilicate (TBOS), tetra- s-butylOrthosilicate (T2BOS), and tetraisopropoxysilane (T2POS). The measured rates of alcohol release in poisoned controls depended on the Orthosilicate structure with TBOS, which produced a 1° alcohol (1-butanol), hydrolyzing more rapidly than T2POS and T2BOS, that produced the 2° alcohols 2-butanol and 2-propanol, respectively. The Orthosilicates were added as light non-aqueous phase liquids (LNAPLs) with ATCC strain 21198 and formed dispersed droplets when continuously mixed. Continuous rates of oxygen (O2) consumption and carbon dioxide (CO2 ) production confirmed alcohol metabolism by ATCC strain 21198 was occurring. The rates of metabolism (TBOS > T2POS > T2BOS) were consistent with the rates of alcohol release via abiotic hydrolysis. 1,4-D and 1,1,1-TCA were continuously transformed in successive additions by ATCC strain 21198 over 125 days, with the rates highly correlated with the rates of metabolism. The metabolism of the alcohols was not inhibited by acetylene , while transformation of 1,4-D and 1,1,1-TCA was inhibited by this gas. As acetylene is a potent inactivator of diverse bacterial monooxygenases, these results suggest that monooxygenase activity was required for the observed cometabolic transformations but not for alcohol utilization. Alcohol concentrations in the biologically active reactors were maintained below the levels of detection, indicating they were metabolized rapidly after being produced. Much lower rates of O 2 consumption were observed in the reactors containing T2BOS, which has benefits for in-situ bioremediation. The results illustrate the importance of the structure of the SRC when developing passive aerobic cometabolic treatment systems.

Weijue Chen - One of the best experts on this subject based on the ideXlab platform.

  • long term cometabolic transformation of 1 1 1 trichloroethane and 1 4 dioxane by rhodococcus rhodochrous atcc 21198 grown on alcohols slowly produced by Orthosilicates
    Journal of Contaminant Hydrology, 2021
    Co-Authors: Riley A Murnane, Weijue Chen, Michael R Hyman, Lewis Semprini
    Abstract:

    Abstract Long-term cometabolic transformation of 1,1,1-trichlorethane (1,1,1-TCA) and 1,4-dioxane (1,4-D) was achieved using slow release compounds (SRCs) as growth substrates for pure cultures of Rhodococcus rhodochrous ATCC 21198 (ATCC strain 21,198). Resting cell transformation tests showed 1,4-D transformation occurred without a lag phase for cells grown on 2-butanol, while an induction period of several hours was required for 1-butanol grown cells. These observations were consistent with activity-based labeling patterns for monooxygenase hydroxylase components and specific rates of tetrahydrofuran (THF) degradation. 1,1,1-TCA and 1,4-D degradation rates for alcohol-grown cells were slower than those for cells grown on gaseous alkanes such as isobutane. Batch metabolism and degradation tests were performed, in the presence of 1,1,1-TCA and 1,4-D, with the growth of ATCC strain 21,198 on alcohols produced by the hydrolysis of Orthosilicates. Three Orthosilicates were tested: tetrabutylOrthosilicate (TBOS), tetra-sec-butylOrthosilicate (T2BOS), and tetraisopropoxysilane (T2POS). The measured rates of alcohol release in poisoned controls depended on the Orthosilicate structure with TBOS, which produced a 1° alcohol (1-butanol), hydrolyzing more rapidly than T2POS and T2BOS, that produced the 2° alcohols 2-butanol and 2-propanol, respectively. The Orthosilicates were added as light non-aqueous phase liquids (LNAPLs) with ATCC strain 21,198 and formed dispersed droplets when continuously mixed. Continuous rates of oxygen (O2) consumption and carbon dioxide (CO2) production confirmed alcohol metabolism by ATCC strain 21,198 was occurring. The rates of metabolism (TBOS > T2POS > T2BOS) were consistent with the rates of alcohol release via abiotic hydrolysis. 1,4-D and 1,1,1-TCA were continuously transformed in successive additions by ATCC strain 21,198 over 125 days, with the rates highly correlated with the rates of metabolism. The metabolism of the alcohols was not inhibited by acetylene, while transformation of 1,4-D and 1,1,1-TCA was inhibited by this gas. As acetylene is a potent inactivator of diverse bacterial monooxygenases, these results suggest that monooxygenase activity was required for the observed cometabolic transformations but not for alcohol utilization. Alcohol concentrations in the biologically active reactors were maintained below the levels of detection, indicating they were metabolized rapidly after being produced. Much lower rates of O2 consumption were observed in the reactors containing T2BOS, which has benefits for in-situ bioremediation. The results illustrate the importance of the structure of the SRC when developing passive aerobic cometabolic treatment systems.

  • long term cometabolic transformation of 1 1 1 trichloroethane and 1 4 dioxane by rhodococcus rhodochrous atcc 21198 grown on alcohols slowly produced by Orthosilicates
    Journal of Contaminant Hydrology, 2021
    Co-Authors: Riley A Murnane, Weijue Chen, Michael R Hyman, Lewis Semprini
    Abstract:

    Abstract Long-term cometabolic transformation of 1,1,1-trichlorethane (1,1,1-TCA) and 1,4-dioxane (1,4-D) was achieved using slow release compounds (SRCs) as growth substrates for pure cultures of Rhodococcus rhodochrous ATCC 21198 (ATCC strain 21198). Resting cell transformation tests showed 1,4-D transformation occurred without a lag phase for cells grown on 2-butanol, while an induction period of several hours was required for 1-butanol grown cells. These observations were consistent with activity-based labeling patterns for monooxygenase hydroxylase components and specific rates of tetrahydrofuran (THF) degradation. 1,1,1-TCA and 1,4-D degradation rates for alcohol-grown cells were slower than those for cells grown on gaseous alkanes such as isobutane . Batch metabolism and degradation tests were performed, in the presence of 1,1,1-TCA and 1,4-D, with the growth of ATCC strain 21198 on alcohols produced by the hydrolysis of Orthosilicates. Three Orthosilicates were tested: tetrabutylOrthosilicate (TBOS), tetra- s-butylOrthosilicate (T2BOS), and tetraisopropoxysilane (T2POS). The measured rates of alcohol release in poisoned controls depended on the Orthosilicate structure with TBOS, which produced a 1° alcohol (1-butanol), hydrolyzing more rapidly than T2POS and T2BOS, that produced the 2° alcohols 2-butanol and 2-propanol, respectively. The Orthosilicates were added as light non-aqueous phase liquids (LNAPLs) with ATCC strain 21198 and formed dispersed droplets when continuously mixed. Continuous rates of oxygen (O2) consumption and carbon dioxide (CO2 ) production confirmed alcohol metabolism by ATCC strain 21198 was occurring. The rates of metabolism (TBOS > T2POS > T2BOS) were consistent with the rates of alcohol release via abiotic hydrolysis. 1,4-D and 1,1,1-TCA were continuously transformed in successive additions by ATCC strain 21198 over 125 days, with the rates highly correlated with the rates of metabolism. The metabolism of the alcohols was not inhibited by acetylene , while transformation of 1,4-D and 1,1,1-TCA was inhibited by this gas. As acetylene is a potent inactivator of diverse bacterial monooxygenases, these results suggest that monooxygenase activity was required for the observed cometabolic transformations but not for alcohol utilization. Alcohol concentrations in the biologically active reactors were maintained below the levels of detection, indicating they were metabolized rapidly after being produced. Much lower rates of O 2 consumption were observed in the reactors containing T2BOS, which has benefits for in-situ bioremediation. The results illustrate the importance of the structure of the SRC when developing passive aerobic cometabolic treatment systems.

U S Hareesh - One of the best experts on this subject based on the ideXlab platform.

  • co2 absorption studies on mixed alkali Orthosilicates containing rare earth second phase additives
    Journal of Physical Chemistry C, 2015
    Co-Authors: P V Subha, Balagopal N. Nair, Takeo Yamaguchi, P Hareesh, Peer A Mohamed, K G K Warrier, U S Hareesh
    Abstract:

    Lithium silicate containing eutectic Orthosilicate mixtures developed by a solid-state route displayed excellent characteristics as carbon dioxide absorbents at elevated temperature, showing absorption capacity of 256 mg g–1. Incorporation of second-phase materials was investigated as a strategy to enhance the stability of the absorbent materials against agglomeration and sintering during powder processing and high-temperature cyclic absorption/desorption loading. Yttrium oxide, gadolinium oxide, and lanthanum phosphate were added as second phases to the absorbent. It was found that when the composites were rich in absorbents (10:1 and 20:1 absorbent/second phase), the absorption performance was hardly influenced by the type of the second-phase material present. Yttrium oxide or gadolinium oxide additions in large quantities were found to enhance the absorption capacity of the Orthosilicate phase. The 2:1 sample containing yttrium oxide gave absorption capacity of 315 mg g–1 of Orthosilicate absorbent pre...