Osteology

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 4194 Experts worldwide ranked by ideXlab platform

Xu Guanghui - One of the best experts on this subject based on the ideXlab platform.

  • A New Saurichthyiform (Actinopterygii) with a Crushing Feeding Mechanism from the Middle Triassic of Guizhou (China)
    Public Library of Science, 2013
    Co-Authors: Wu Feixiang, Chang Mee-mann, Sun Yuanlin, Xu Guanghui
    Abstract:

    Equipped with an effective predatory feeding mechanism enhanced by large and sharp teeth, pointed snout and elongate body, saurichthyiform fishes are considered common fish-eaters in the early Mesozoic aquatic ecosystems. Additionally, because of the similar body plan across species, saurichthyiforms are also regarded evolutionally conservative, with few morphological and ecological changes during their long history. However, their phylogenetic affinity remains unclear as to whether they are chondrostean, neopterygian or stem-actinopteran, and likewise the intrarelationships of the group have rarely been explored. gen. nov. greatly increases the neurocranial variations in saurichthyiforms, and its novel feeding structure suggests the consumption of hard-preys instead of fishes.Our findings highlight the detailed Osteology of a saurichthyiform braincase and its feeding design. We suggest that saurichthyiforms are closely allied to the Acipenseriformes. Saurichthyiforms were very diverse in the cranial Osteology and they might have undergone a rapid evolutionary radiation via, for the new material here, transforming the feeding mechanism and thus exploiting the food resources unsuitable for other saurichthyiforms

  • A New Saurichthyiform (Actinopterygii) with a Crushing Feeding Mechanism from the Middle Triassic of Guizhou (China)
    plos one, 2013
    Co-Authors: Wu Feixiang, Chang Mee-mann, Sun Yuanlin, Xu Guanghui
    Abstract:

    Background: Equipped with an effective predatory feeding mechanism enhanced by large and sharp teeth, pointed snout and elongate body, saurichthyiform fishes are considered common fish-eaters in the early Mesozoic aquatic ecosystems. Additionally, because of the similar body plan across species, saurichthyiforms are also regarded evolutionally conservative, with few morphological and ecological changes during their long history. However, their phylogenetic affinity remains unclear as to whether they are chondrostean, neopterygian or stem-actinopteran, and likewise the intrarelationships of the group have rarely been explored. Methodology/Principal Findings: Here we report a new saurichthyiform from the Middle Triassic of Guizhou, China, based on the well-preserved specimens including a 3-D braincase. The new taxon, Yelangichthys macrocephalus gen. et sp. nov., is unique among saurichthyiforms in having a peculiar neurocranium with a broad orbital tectum, paired posterior myodomes, a deep, transverse fossa in the posterodorsal part of the orbit, and a feeding mechanism structured for durophagy. Phylogenetic analysis places Yelangichthys gen. nov. at the most basal position in the Saurichthyiformes as the sister to Saurichthyidae, and a new family Yelangichthyidae is erected to include only Y. macrocephalus gen. et sp. nov. The monophyly of the Chondrostei comprising [Saurichthyiformes + Acipenseriformes] Birgeriiformes is supported, but not the monophyly of Saurichthys, the type genus of Saurichthyidae. With its outstanding osteological details, Yelangichthys gen. nov. greatly increases the neurocranial variations in saurichthyiforms, and its novel feeding structure suggests the consumption of hard-preys instead of fishes. Conclusions/Significance: Our findings highlight the detailed Osteology of a saurichthyiform braincase and its feeding design. We suggest that saurichthyiforms are closely allied to the Acipenseriformes. Saurichthyiforms were very diverse in the cranial Osteology and they might have undergone a rapid evolutionary radiation via, for the new material here, transforming the feeding mechanism and thus exploiting the food resources unsuitable for other saurichthyiforms.Multidisciplinary SciencesSCI(E)PubMed4ARTICLE12e81010

Dominique Adriaens - One of the best experts on this subject based on the ideXlab platform.

  • comparative developmental Osteology of the seahorse skeleton reveals heterochrony amongst hippocampus sp and progressive caudal fin loss
    Evodevo, 2014
    Co-Authors: Tamara A Franzodendaal, Dominique Adriaens
    Abstract:

    Seahorses are well known for their highly derived head shape, prehensile tail and armoured body. They belong to the family of teleosts known as Syngnathidae, which also includes the pipefishes, pipehorses and seadragons. Very few studies have investigated the development of the skeleton of seahorses because larvae are extremely difficult to obtain in the wild and breeding in captivity is rarely successful. Here we compare the developmental Osteology of Hippocampus reidi over an ontogenetic series spanning the first 93 days after release from the brood pouch to that of a smaller series of Hippocampus; namely H. subelongatus. We compare the Osteology in these two species over growth to the published description of the dwarf species, H. zosterae. We show that ossification onset in H. subelongatus is earlier than in H. reidi, despite similar sizes at parturition. Interestingly, the timing of development of the bony skeleton in H. zosterae is similar to that of the larger species, H. subelongatus. Furthermore, we show that the growth rate of all three species is similar up until about 30 days post pouch release. From this stage onwards in the life history, the size of the dwarf species H. zosterae remains relatively constant whilst the other two species continue growing with an accelerated growth phase. This data together with a phylogenetic assessment suggests that there has been a heterochronic shift (a delay) in the timing of ossification in H. reidi and accelerated bonedevelopment in H. zosterae. That is, H. zosterae is not a developmentally truncated dwarf species but rather a smaller version of its larger ancestor, “a proportioned dwarf” species. Furthermore, we show that caudal fin loss is incomplete in Hippocampus seahorses. This study shows that these three species of Hippocampus seahorses have evolved (either directly or indirectly) different osteogenic strategies over the last 20–30 million years of seahorse evolution.

William E Bemis - One of the best experts on this subject based on the ideXlab platform.

Wu Feixiang - One of the best experts on this subject based on the ideXlab platform.

  • A New Saurichthyiform (Actinopterygii) with a Crushing Feeding Mechanism from the Middle Triassic of Guizhou (China)
    Public Library of Science, 2013
    Co-Authors: Wu Feixiang, Chang Mee-mann, Sun Yuanlin, Xu Guanghui
    Abstract:

    Equipped with an effective predatory feeding mechanism enhanced by large and sharp teeth, pointed snout and elongate body, saurichthyiform fishes are considered common fish-eaters in the early Mesozoic aquatic ecosystems. Additionally, because of the similar body plan across species, saurichthyiforms are also regarded evolutionally conservative, with few morphological and ecological changes during their long history. However, their phylogenetic affinity remains unclear as to whether they are chondrostean, neopterygian or stem-actinopteran, and likewise the intrarelationships of the group have rarely been explored. gen. nov. greatly increases the neurocranial variations in saurichthyiforms, and its novel feeding structure suggests the consumption of hard-preys instead of fishes.Our findings highlight the detailed Osteology of a saurichthyiform braincase and its feeding design. We suggest that saurichthyiforms are closely allied to the Acipenseriformes. Saurichthyiforms were very diverse in the cranial Osteology and they might have undergone a rapid evolutionary radiation via, for the new material here, transforming the feeding mechanism and thus exploiting the food resources unsuitable for other saurichthyiforms

  • A New Saurichthyiform (Actinopterygii) with a Crushing Feeding Mechanism from the Middle Triassic of Guizhou (China)
    plos one, 2013
    Co-Authors: Wu Feixiang, Chang Mee-mann, Sun Yuanlin, Xu Guanghui
    Abstract:

    Background: Equipped with an effective predatory feeding mechanism enhanced by large and sharp teeth, pointed snout and elongate body, saurichthyiform fishes are considered common fish-eaters in the early Mesozoic aquatic ecosystems. Additionally, because of the similar body plan across species, saurichthyiforms are also regarded evolutionally conservative, with few morphological and ecological changes during their long history. However, their phylogenetic affinity remains unclear as to whether they are chondrostean, neopterygian or stem-actinopteran, and likewise the intrarelationships of the group have rarely been explored. Methodology/Principal Findings: Here we report a new saurichthyiform from the Middle Triassic of Guizhou, China, based on the well-preserved specimens including a 3-D braincase. The new taxon, Yelangichthys macrocephalus gen. et sp. nov., is unique among saurichthyiforms in having a peculiar neurocranium with a broad orbital tectum, paired posterior myodomes, a deep, transverse fossa in the posterodorsal part of the orbit, and a feeding mechanism structured for durophagy. Phylogenetic analysis places Yelangichthys gen. nov. at the most basal position in the Saurichthyiformes as the sister to Saurichthyidae, and a new family Yelangichthyidae is erected to include only Y. macrocephalus gen. et sp. nov. The monophyly of the Chondrostei comprising [Saurichthyiformes + Acipenseriformes] Birgeriiformes is supported, but not the monophyly of Saurichthys, the type genus of Saurichthyidae. With its outstanding osteological details, Yelangichthys gen. nov. greatly increases the neurocranial variations in saurichthyiforms, and its novel feeding structure suggests the consumption of hard-preys instead of fishes. Conclusions/Significance: Our findings highlight the detailed Osteology of a saurichthyiform braincase and its feeding design. We suggest that saurichthyiforms are closely allied to the Acipenseriformes. Saurichthyiforms were very diverse in the cranial Osteology and they might have undergone a rapid evolutionary radiation via, for the new material here, transforming the feeding mechanism and thus exploiting the food resources unsuitable for other saurichthyiforms.Multidisciplinary SciencesSCI(E)PubMed4ARTICLE12e81010

Tamara A Franzodendaal - One of the best experts on this subject based on the ideXlab platform.

  • comparative developmental Osteology of the seahorse skeleton reveals heterochrony amongst hippocampus sp and progressive caudal fin loss
    Evodevo, 2014
    Co-Authors: Tamara A Franzodendaal, Dominique Adriaens
    Abstract:

    Seahorses are well known for their highly derived head shape, prehensile tail and armoured body. They belong to the family of teleosts known as Syngnathidae, which also includes the pipefishes, pipehorses and seadragons. Very few studies have investigated the development of the skeleton of seahorses because larvae are extremely difficult to obtain in the wild and breeding in captivity is rarely successful. Here we compare the developmental Osteology of Hippocampus reidi over an ontogenetic series spanning the first 93 days after release from the brood pouch to that of a smaller series of Hippocampus; namely H. subelongatus. We compare the Osteology in these two species over growth to the published description of the dwarf species, H. zosterae. We show that ossification onset in H. subelongatus is earlier than in H. reidi, despite similar sizes at parturition. Interestingly, the timing of development of the bony skeleton in H. zosterae is similar to that of the larger species, H. subelongatus. Furthermore, we show that the growth rate of all three species is similar up until about 30 days post pouch release. From this stage onwards in the life history, the size of the dwarf species H. zosterae remains relatively constant whilst the other two species continue growing with an accelerated growth phase. This data together with a phylogenetic assessment suggests that there has been a heterochronic shift (a delay) in the timing of ossification in H. reidi and accelerated bonedevelopment in H. zosterae. That is, H. zosterae is not a developmentally truncated dwarf species but rather a smaller version of its larger ancestor, “a proportioned dwarf” species. Furthermore, we show that caudal fin loss is incomplete in Hippocampus seahorses. This study shows that these three species of Hippocampus seahorses have evolved (either directly or indirectly) different osteogenic strategies over the last 20–30 million years of seahorse evolution.