Paenibacillus popilliae

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 54 Experts worldwide ranked by ideXlab platform

L W Duncan - One of the best experts on this subject based on the ideXlab platform.

  • real time pcr as an effective technique to assess the impact of phoresy by Paenibacillus sp bacteria on steinernema diaprepesi nematodes in nature
    Molecular Ecology Resources, 2012
    Co-Authors: Raquel Camposherrera, Fahiem E Elborai, L W Duncan
    Abstract:

    Quantitative real-time PCR (qPCR) is a powerful tool to study species of cryptic organisms in complex food webs. This technique was recently developed to detect and quantify several species of entomopathogenic nematodes (EPNs), which are widely used for biological control of insects, and some natural enemies of EPNs such as nematophagous fungi and the phoretic bacteria Paenibacillus sp. and Paenibacillus nematophilus. A drawback to the use of primers and TaqMan probes designed for Paenibacillus sp. is that the qPCR also amplified Paenibacillus thiaminolyticus and Paenibacillus popilliae, two closely related species that are not phoretically associated with EPNs. Here, we report that the detection of Paenibacillus sp. DNA in nematode samples was two orders of magnitude greater (P < 0.001) when the bacterium was added to soil together with its EPN species-specific host Steinernema diaprepesi than when it was added concomitantly with other EPNs or with species of bacterial-feeding nematodes. Just 6% of samples detected trace amounts of P. thiaminolyticus and P. popilliae exposed to the same experimental conditions. Thus, although the molecular assay detects Paenibacillus spp. DNA in nonphoretic associations, the levels are essentially background compared to the detection of Paenibacillus sp. in association with its nematode host.

  • entomopathogenic nematodes phoretic Paenibacillus spp and the use of real time quantitative pcr to explore soil food webs in florida citrus groves
    Journal of Invertebrate Pathology, 2011
    Co-Authors: Raquel Camposherrera, Fahiem E Elborai, Robin J Stuart, J H Graham, L W Duncan
    Abstract:

    Quantitative real-time PCR (qPCR) is a powerful tool to detect and quantify species of cryptic organisms such as bacteria, fungi and nematodes from soil samples. As such, qPCR offers new opportunities to study the ecology of soil habitats by providing a single method to characterize communities of diverse organisms from a sample of DNA. Here we describe molecular tools to detect and quantify two bacteria (Paenibacillus nematophilus and Paenibacillus sp.) phoretically associated with entomopathogenic nematodes (EPNs) in the families Heterorhabditidae and Steinernematodae. We also extend the repertoire of species specific primers and TaqMan® probes for EPNs to include Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema feltiae and Steinernema scapterisci, all widely distributed species used commercially for biological control. Primers and probes were designed from the ITS rDNA region for the EPNs and the 16S rDNA region for the bacteria. Standard curves were established using DNA from pure cultures of EPNs and plasmid DNA from the bacteria. The use of TaqMan probes in qPCR resolved the non-specificity of EPN and some bacterial primer amplifications whereas those for Paenibacillus sp. also amplified Paenibacillus thiaminolyticus and Paenibacillus popilliae, two species that are not phoretically associated with nematodes. The primer-probe sets for EPNs were able to accurately detect three infective juvenile EPNs added to nematodes recovered from soil samples. The molecular set for Paenibacillus sp. detected the bacterium attached to Steinernema diaprepesi suspended in water or added to nematodes recovered from soil samples but its detection decreased markedly in the soil samples, even when a nested PCR protocol was employed. Using qPCR we detected S. scapterisci at low levels in a citrus grove, which suggested natural long-distance spread of this exotic species, which is applied to pastures and golf courses to manage mole crickets (Scapteriscus spp.). Paenibacillus sp. (but not P. nematophilus) was detected in low quantities in the same survey but was unrelated to the spatial pattern of S. diaprepesi. The results of this research validate several new tools for studying the ecology of EPNs and their phoretic bacteria.

Fahiem E Elborai - One of the best experts on this subject based on the ideXlab platform.

  • real time pcr as an effective technique to assess the impact of phoresy by Paenibacillus sp bacteria on steinernema diaprepesi nematodes in nature
    Molecular Ecology Resources, 2012
    Co-Authors: Raquel Camposherrera, Fahiem E Elborai, L W Duncan
    Abstract:

    Quantitative real-time PCR (qPCR) is a powerful tool to study species of cryptic organisms in complex food webs. This technique was recently developed to detect and quantify several species of entomopathogenic nematodes (EPNs), which are widely used for biological control of insects, and some natural enemies of EPNs such as nematophagous fungi and the phoretic bacteria Paenibacillus sp. and Paenibacillus nematophilus. A drawback to the use of primers and TaqMan probes designed for Paenibacillus sp. is that the qPCR also amplified Paenibacillus thiaminolyticus and Paenibacillus popilliae, two closely related species that are not phoretically associated with EPNs. Here, we report that the detection of Paenibacillus sp. DNA in nematode samples was two orders of magnitude greater (P < 0.001) when the bacterium was added to soil together with its EPN species-specific host Steinernema diaprepesi than when it was added concomitantly with other EPNs or with species of bacterial-feeding nematodes. Just 6% of samples detected trace amounts of P. thiaminolyticus and P. popilliae exposed to the same experimental conditions. Thus, although the molecular assay detects Paenibacillus spp. DNA in nonphoretic associations, the levels are essentially background compared to the detection of Paenibacillus sp. in association with its nematode host.

  • entomopathogenic nematodes phoretic Paenibacillus spp and the use of real time quantitative pcr to explore soil food webs in florida citrus groves
    Journal of Invertebrate Pathology, 2011
    Co-Authors: Raquel Camposherrera, Fahiem E Elborai, Robin J Stuart, J H Graham, L W Duncan
    Abstract:

    Quantitative real-time PCR (qPCR) is a powerful tool to detect and quantify species of cryptic organisms such as bacteria, fungi and nematodes from soil samples. As such, qPCR offers new opportunities to study the ecology of soil habitats by providing a single method to characterize communities of diverse organisms from a sample of DNA. Here we describe molecular tools to detect and quantify two bacteria (Paenibacillus nematophilus and Paenibacillus sp.) phoretically associated with entomopathogenic nematodes (EPNs) in the families Heterorhabditidae and Steinernematodae. We also extend the repertoire of species specific primers and TaqMan® probes for EPNs to include Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema feltiae and Steinernema scapterisci, all widely distributed species used commercially for biological control. Primers and probes were designed from the ITS rDNA region for the EPNs and the 16S rDNA region for the bacteria. Standard curves were established using DNA from pure cultures of EPNs and plasmid DNA from the bacteria. The use of TaqMan probes in qPCR resolved the non-specificity of EPN and some bacterial primer amplifications whereas those for Paenibacillus sp. also amplified Paenibacillus thiaminolyticus and Paenibacillus popilliae, two species that are not phoretically associated with nematodes. The primer-probe sets for EPNs were able to accurately detect three infective juvenile EPNs added to nematodes recovered from soil samples. The molecular set for Paenibacillus sp. detected the bacterium attached to Steinernema diaprepesi suspended in water or added to nematodes recovered from soil samples but its detection decreased markedly in the soil samples, even when a nested PCR protocol was employed. Using qPCR we detected S. scapterisci at low levels in a citrus grove, which suggested natural long-distance spread of this exotic species, which is applied to pastures and golf courses to manage mole crickets (Scapteriscus spp.). Paenibacillus sp. (but not P. nematophilus) was detected in low quantities in the same survey but was unrelated to the spatial pattern of S. diaprepesi. The results of this research validate several new tools for studying the ecology of EPNs and their phoretic bacteria.

  • bionomics of a phoretic association between Paenibacillus sp and the entomopathogenic nematode steinernema diaprepesi
    Journal of Nematology, 2005
    Co-Authors: Fahiem E Elborai, L W Duncan, J F Preston
    Abstract:

    Spores of an unidentified bacterium were discovered adhering to cuticles of third-stage infective juvenile (IJ) Steinernema diaprepesi endemic in a central Florida citrus orchard. The spores were cup-shaped, 5 to 6 mm in length, and contained a central endospore. Based on 16S rDNA gene sequencing, the bacterium is closely related to the insect pathogens Paenibacillus popilliae and P. lentimorbus. However, unlike the latter bacteria, the Paenibacillus sp. is non-fastidious and grew readily on several standard media. The bacterium did not attach to cuticles of several entomopathogenic or plant-parasitic nematodes tested, suggesting host specificity to S. diaprepesi. Attachment of Paenibacillus sp. to the third-stage cuticle of S. diaprepesi differed from Paenibacillus spp. associated with heterorhabditid entomopathogenic nematodes, which attach to the IJ sheath (second-stage cuticle). The inability to detect endospores within the body of S. diaprepesi indicates that the bacterial association with the nematode is phoretic. The Paenibacillus sp. showed limited virulence to Diaprepes abbreviatus, requiring inoculation of larvae with 108 spores to achieve death of the insect and reproduction of the bacterium. The effect of the bacterium on the nematode population biology was studied in 25-cm-long vertical sand columns. A single D. abbreviatus larva was confined below 15-cm depth, and the soil surface was inoculated with either spore-free or spore-encumbered IJ nematodes. After 7 days, the proportion of IJ below 5-cm depth was seven-fold greater for spore-free IJ than for spore-encumbered nematodes. Mortality of D. abbreviatus larvae was 72% greater (P = 0.01) for spore-free compared to spore-encumbered S. diaprepesi. More than 5 times as many progeny IJs (P = 0.01) were produced by spore-free compared to spore-encumbered nematodes. These data suggest that the bacterium is a component of the D. abbreviatus food web with some potential to regulate a natural enemy of the insect.

Raquel Camposherrera - One of the best experts on this subject based on the ideXlab platform.

  • real time pcr as an effective technique to assess the impact of phoresy by Paenibacillus sp bacteria on steinernema diaprepesi nematodes in nature
    Molecular Ecology Resources, 2012
    Co-Authors: Raquel Camposherrera, Fahiem E Elborai, L W Duncan
    Abstract:

    Quantitative real-time PCR (qPCR) is a powerful tool to study species of cryptic organisms in complex food webs. This technique was recently developed to detect and quantify several species of entomopathogenic nematodes (EPNs), which are widely used for biological control of insects, and some natural enemies of EPNs such as nematophagous fungi and the phoretic bacteria Paenibacillus sp. and Paenibacillus nematophilus. A drawback to the use of primers and TaqMan probes designed for Paenibacillus sp. is that the qPCR also amplified Paenibacillus thiaminolyticus and Paenibacillus popilliae, two closely related species that are not phoretically associated with EPNs. Here, we report that the detection of Paenibacillus sp. DNA in nematode samples was two orders of magnitude greater (P < 0.001) when the bacterium was added to soil together with its EPN species-specific host Steinernema diaprepesi than when it was added concomitantly with other EPNs or with species of bacterial-feeding nematodes. Just 6% of samples detected trace amounts of P. thiaminolyticus and P. popilliae exposed to the same experimental conditions. Thus, although the molecular assay detects Paenibacillus spp. DNA in nonphoretic associations, the levels are essentially background compared to the detection of Paenibacillus sp. in association with its nematode host.

  • entomopathogenic nematodes phoretic Paenibacillus spp and the use of real time quantitative pcr to explore soil food webs in florida citrus groves
    Journal of Invertebrate Pathology, 2011
    Co-Authors: Raquel Camposherrera, Fahiem E Elborai, Robin J Stuart, J H Graham, L W Duncan
    Abstract:

    Quantitative real-time PCR (qPCR) is a powerful tool to detect and quantify species of cryptic organisms such as bacteria, fungi and nematodes from soil samples. As such, qPCR offers new opportunities to study the ecology of soil habitats by providing a single method to characterize communities of diverse organisms from a sample of DNA. Here we describe molecular tools to detect and quantify two bacteria (Paenibacillus nematophilus and Paenibacillus sp.) phoretically associated with entomopathogenic nematodes (EPNs) in the families Heterorhabditidae and Steinernematodae. We also extend the repertoire of species specific primers and TaqMan® probes for EPNs to include Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema feltiae and Steinernema scapterisci, all widely distributed species used commercially for biological control. Primers and probes were designed from the ITS rDNA region for the EPNs and the 16S rDNA region for the bacteria. Standard curves were established using DNA from pure cultures of EPNs and plasmid DNA from the bacteria. The use of TaqMan probes in qPCR resolved the non-specificity of EPN and some bacterial primer amplifications whereas those for Paenibacillus sp. also amplified Paenibacillus thiaminolyticus and Paenibacillus popilliae, two species that are not phoretically associated with nematodes. The primer-probe sets for EPNs were able to accurately detect three infective juvenile EPNs added to nematodes recovered from soil samples. The molecular set for Paenibacillus sp. detected the bacterium attached to Steinernema diaprepesi suspended in water or added to nematodes recovered from soil samples but its detection decreased markedly in the soil samples, even when a nested PCR protocol was employed. Using qPCR we detected S. scapterisci at low levels in a citrus grove, which suggested natural long-distance spread of this exotic species, which is applied to pastures and golf courses to manage mole crickets (Scapteriscus spp.). Paenibacillus sp. (but not P. nematophilus) was detected in low quantities in the same survey but was unrelated to the spatial pattern of S. diaprepesi. The results of this research validate several new tools for studying the ecology of EPNs and their phoretic bacteria.

Allan A. Yousten - One of the best experts on this subject based on the ideXlab platform.

  • The Biopesticide Paenibacillus popilliae Has a Vancomycin Resistance Gene Cluster Homologous to the Enterococcal VanA Vancomycin Resistance Gene Cluster
    Antimicrobial Agents and Chemotherapy, 2000
    Co-Authors: Robin Patel, Kerryl E. Piper, Franklin R. Cockerill, James M. Steckelberg, Allan A. Yousten
    Abstract:

    We have previously identified, in Paenibacillus popilliae, a 708-bp sequence which has homology to the sequence of the enterococcal vanA gene. We have performed further studies revealing five genes encoding homologues of VanY, VanZ, VanH, VanA, and VanX in P. popilliae. The predicted amino acid sequences are similar to those in VanA vancomycin-resistant enterococci: 61% identity for VanY, 21% for VanZ, 74% for VanH, 77% for VanA, and 79% for VanX. The genes in P. popilliae may have been a precursor to or have had ancestral genes in common with vancomycin resistance genes in enterococci. The use of P. popilliae biopesticidal preparations in agricultural practice may have an impact on bacterial resistance in human pathogens.

Robin Patel - One of the best experts on this subject based on the ideXlab platform.

  • The Biopesticide Paenibacillus popilliae Has a Vancomycin Resistance Gene Cluster Homologous to the Enterococcal VanA Vancomycin Resistance Gene Cluster
    Antimicrobial Agents and Chemotherapy, 2000
    Co-Authors: Robin Patel, Kerryl E. Piper, Franklin R. Cockerill, James M. Steckelberg, Allan A. Yousten
    Abstract:

    We have previously identified, in Paenibacillus popilliae, a 708-bp sequence which has homology to the sequence of the enterococcal vanA gene. We have performed further studies revealing five genes encoding homologues of VanY, VanZ, VanH, VanA, and VanX in P. popilliae. The predicted amino acid sequences are similar to those in VanA vancomycin-resistant enterococci: 61% identity for VanY, 21% for VanZ, 74% for VanH, 77% for VanA, and 79% for VanX. The genes in P. popilliae may have been a precursor to or have had ancestral genes in common with vancomycin resistance genes in enterococci. The use of P. popilliae biopesticidal preparations in agricultural practice may have an impact on bacterial resistance in human pathogens.