Parametrizations

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 152976 Experts worldwide ranked by ideXlab platform

D. Schöllhammer - One of the best experts on this subject based on the ideXlab platform.

  • Kirchhoff–Love shell theory based on tangential differential calculus
    Computational Mechanics, 2019
    Co-Authors: D. Schöllhammer, T. P. Fries
    Abstract:

    The Kirchhoff–Love shell theory is recasted in the frame of the tangential differential calculus (TDC) where differential operators on surfaces are formulated based on global, three-dimensional coordinates. As a consequence, there is no need for a parametrization of the shell geometry implying curvilinear surface coordinates as used in the classical shell theory. Therefore, the proposed TDC-based formulation also applies to shell geometries which are zero-isosurfaces as in the level-set method where no parametrization is available in general. For the discretization, the TDC-based formulation may be used based on surface meshes implying element-wise Parametrizations. Then, the results are equivalent to those obtained based on the classical theory. However, it may also be used in recent finite element approaches as the TraceFEM and CutFEM where shape functions are generated on a background mesh without any need for a parametrization. Numerical results presented herein are achieved with isogeometric analysis for classical and new benchmark tests. Higher-order convergence rates in the residual errors are achieved when the physical fields are sufficiently smooth.

  • kirchhoff love shell theory based on tangential differential calculus
    Computational Mechanics, 2019
    Co-Authors: D. Schöllhammer, Thomaspeter Fries
    Abstract:

    The Kirchhoff–Love shell theory is recasted in the frame of the tangential differential calculus (TDC) where differential operators on surfaces are formulated based on global, three-dimensional coordinates. As a consequence, there is no need for a parametrization of the shell geometry implying curvilinear surface coordinates as used in the classical shell theory. Therefore, the proposed TDC-based formulation also applies to shell geometries which are zero-isosurfaces as in the level-set method where no parametrization is available in general. For the discretization, the TDC-based formulation may be used based on surface meshes implying element-wise Parametrizations. Then, the results are equivalent to those obtained based on the classical theory. However, it may also be used in recent finite element approaches as the TraceFEM and CutFEM where shape functions are generated on a background mesh without any need for a parametrization. Numerical results presented herein are achieved with isogeometric analysis for classical and new benchmark tests. Higher-order convergence rates in the residual errors are achieved when the physical fields are sufficiently smooth.

T N Palmer - One of the best experts on this subject based on the ideXlab platform.

  • stochastic Parametrizations and model uncertainty in the lorenz 96 system
    Philosophical Transactions of the Royal Society A, 2013
    Co-Authors: H M Arnold, Irene M Moroz, T N Palmer
    Abstract:

    Simple chaotic systems are useful tools for testing methods for use in numerical weather simulations owing to their transparency and computational cheapness. The Lorenz system was used here; the full system was defined as 'truth', whereas a truncated version was used as a testbed for parametrization schemes. Several stochastic parametrization schemes were investigated, including additive and multiplicative noise. The forecasts were started from perfect initial conditions, eliminating initial condition uncertainty. The stochastically generated ensembles were compared with perturbed parameter ensembles and deterministic schemes. The stochastic Parametrizations showed an improvement in weather and climate forecasting skill over deterministic Parametrizations. Including a temporal autocorrelation resulted in a significant improvement over white noise, challenging the standard idea that a parametrization should only represent sub-gridscale variability. The skill of the ensemble at representing model uncertainty was tested; the stochastic ensembles gave better estimates of model uncertainty than the perturbed parameter ensembles. The forecasting skill of the Parametrizations was found to be linked to their ability to reproduce the climatology of the full model. This is important in a seamless prediction system, allowing the reliability of short-term forecasts to provide a quantitative constraint on the accuracy of climate predictions from the same system.

Thomaspeter Fries - One of the best experts on this subject based on the ideXlab platform.

  • kirchhoff love shell theory based on tangential differential calculus
    Computational Mechanics, 2019
    Co-Authors: D. Schöllhammer, Thomaspeter Fries
    Abstract:

    The Kirchhoff–Love shell theory is recasted in the frame of the tangential differential calculus (TDC) where differential operators on surfaces are formulated based on global, three-dimensional coordinates. As a consequence, there is no need for a parametrization of the shell geometry implying curvilinear surface coordinates as used in the classical shell theory. Therefore, the proposed TDC-based formulation also applies to shell geometries which are zero-isosurfaces as in the level-set method where no parametrization is available in general. For the discretization, the TDC-based formulation may be used based on surface meshes implying element-wise Parametrizations. Then, the results are equivalent to those obtained based on the classical theory. However, it may also be used in recent finite element approaches as the TraceFEM and CutFEM where shape functions are generated on a background mesh without any need for a parametrization. Numerical results presented herein are achieved with isogeometric analysis for classical and new benchmark tests. Higher-order convergence rates in the residual errors are achieved when the physical fields are sufficiently smooth.

T. P. Fries - One of the best experts on this subject based on the ideXlab platform.

  • Kirchhoff–Love shell theory based on tangential differential calculus
    Computational Mechanics, 2019
    Co-Authors: D. Schöllhammer, T. P. Fries
    Abstract:

    The Kirchhoff–Love shell theory is recasted in the frame of the tangential differential calculus (TDC) where differential operators on surfaces are formulated based on global, three-dimensional coordinates. As a consequence, there is no need for a parametrization of the shell geometry implying curvilinear surface coordinates as used in the classical shell theory. Therefore, the proposed TDC-based formulation also applies to shell geometries which are zero-isosurfaces as in the level-set method where no parametrization is available in general. For the discretization, the TDC-based formulation may be used based on surface meshes implying element-wise Parametrizations. Then, the results are equivalent to those obtained based on the classical theory. However, it may also be used in recent finite element approaches as the TraceFEM and CutFEM where shape functions are generated on a background mesh without any need for a parametrization. Numerical results presented herein are achieved with isogeometric analysis for classical and new benchmark tests. Higher-order convergence rates in the residual errors are achieved when the physical fields are sufficiently smooth.

Tim Palmer - One of the best experts on this subject based on the ideXlab platform.

  • A comparative method to evaluate and validate stochastic Parametrizations
    Quarterly Journal of the Royal Meteorological Society, 2009
    Co-Authors: Leon Hermanson, Brian J. Hoskins, Tim Palmer
    Abstract:

    There is a growing interest in using stochastic Parametrizations in numerical weather and climate prediction models. Previously, Palmer (2001) outlined the issues that give rise to the need for a stochastic parametrization and the forms such a parametrization could take. In this article a method is presented that uses a comparison between a standard-resolution version and a high-resolution version of the same model to gain information relevant for a stochastic parametrization in that model. A correction term that could be used in a stochastic parametrization is derived from the thermodynamic equations of both models. The origin of the components of this term is discussed. It is found that the component related to unresolved wave-wave interactions is important and can act to compensate for large parametrized tendencies. The correction term is not proportional to the parametrized tendency. Finally, it is explained how the correction term could be used to give information about the shape of the random distribution to be used in a stochastic parametrization. Copyright © 2009 Royal Meteorological Society