Phosphamidon

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 360 Experts worldwide ranked by ideXlab platform

Mohd Marsin Sanagi - One of the best experts on this subject based on the ideXlab platform.

  • new magnetic graphene based inorganic organic sol gel hybrid nanocomposite for simultaneous analysis of polar and non polar organophosphorus pesticides from water samples using solid phase extraction
    Chemosphere, 2017
    Co-Authors: Hamid Rashidi Nodeh, Wan Aini Wan Ibrahim, Muhammad Afzal Kamboh, Mohd Marsin Sanagi
    Abstract:

    A new graphene-based tetraethoxysilane-methyltrimethoxysilane sol-gel hybrid magnetic nanocomposite (Fe3O4@G-TEOS-MTMOS) was synthesised, characterized and successfully applied in magnetic solid-phase extraction (MSPE) for simultaneous analysis of polar and non-polar organophosphorus pesticides from several water samples. The Fe3O4@G-TEOS-MTMOS nanocomposite was characterized using Fourier transform-infrared spectroscopy, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy and X-ray diffraction. Separation, determination and quantification were achieved using gas chromatography coupled with micro electron capture detector. Adsorption capacity of the sorbent was calculated using Langmuir equation. MSPE was linear in the range 100–1000 pg mL−1 for Phosphamidon and dimethoate, and 10–100 pg mL−1 for chlorpyrifos and diazinon, with limit of detection (S/N = 3) of 19.8, 23.7, 1.4 and 2.9 pg mL−1 for Phosphamidon, dimethoate, diazinon and chlorpyrifos, respectively. The LODs obtained is well below the maximum residual level (100 pg mL−1) as set by European Union for pesticides in drinking water. Acceptable precision (%RSD) was achieved for intra-day (1.3–8.7%, n = 3) and inter-day (7.6–17.8%, n = 15) analyses. Fe3O4@G-TEOS-MTMOS showed high adsorption capacity (54.4–76.3 mg g−1) for the selected OPPs. No pesticide residues were detected in the water samples analysed. Excellent extraction recoveries (83–105%) were obtained for the spiked OPPs from tap, river, lake and sea water samples. The newly synthesised Fe3O4@G-TEOS-MTMOS showed high potential as adsorbent for OPPs analysis.

Hamid Rashidi Nodeh - One of the best experts on this subject based on the ideXlab platform.

  • new magnetic graphene based inorganic organic sol gel hybrid nanocomposite for simultaneous analysis of polar and non polar organophosphorus pesticides from water samples using solid phase extraction
    Chemosphere, 2017
    Co-Authors: Hamid Rashidi Nodeh, Wan Aini Wan Ibrahim, Muhammad Afzal Kamboh, Mohd Marsin Sanagi
    Abstract:

    A new graphene-based tetraethoxysilane-methyltrimethoxysilane sol-gel hybrid magnetic nanocomposite (Fe3O4@G-TEOS-MTMOS) was synthesised, characterized and successfully applied in magnetic solid-phase extraction (MSPE) for simultaneous analysis of polar and non-polar organophosphorus pesticides from several water samples. The Fe3O4@G-TEOS-MTMOS nanocomposite was characterized using Fourier transform-infrared spectroscopy, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy and X-ray diffraction. Separation, determination and quantification were achieved using gas chromatography coupled with micro electron capture detector. Adsorption capacity of the sorbent was calculated using Langmuir equation. MSPE was linear in the range 100–1000 pg mL−1 for Phosphamidon and dimethoate, and 10–100 pg mL−1 for chlorpyrifos and diazinon, with limit of detection (S/N = 3) of 19.8, 23.7, 1.4 and 2.9 pg mL−1 for Phosphamidon, dimethoate, diazinon and chlorpyrifos, respectively. The LODs obtained is well below the maximum residual level (100 pg mL−1) as set by European Union for pesticides in drinking water. Acceptable precision (%RSD) was achieved for intra-day (1.3–8.7%, n = 3) and inter-day (7.6–17.8%, n = 15) analyses. Fe3O4@G-TEOS-MTMOS showed high adsorption capacity (54.4–76.3 mg g−1) for the selected OPPs. No pesticide residues were detected in the water samples analysed. Excellent extraction recoveries (83–105%) were obtained for the spiked OPPs from tap, river, lake and sea water samples. The newly synthesised Fe3O4@G-TEOS-MTMOS showed high potential as adsorbent for OPPs analysis.

K V R Rao - One of the best experts on this subject based on the ideXlab platform.

Wan Aini Wan Ibrahim - One of the best experts on this subject based on the ideXlab platform.

  • new magnetic graphene based inorganic organic sol gel hybrid nanocomposite for simultaneous analysis of polar and non polar organophosphorus pesticides from water samples using solid phase extraction
    Chemosphere, 2017
    Co-Authors: Hamid Rashidi Nodeh, Wan Aini Wan Ibrahim, Muhammad Afzal Kamboh, Mohd Marsin Sanagi
    Abstract:

    A new graphene-based tetraethoxysilane-methyltrimethoxysilane sol-gel hybrid magnetic nanocomposite (Fe3O4@G-TEOS-MTMOS) was synthesised, characterized and successfully applied in magnetic solid-phase extraction (MSPE) for simultaneous analysis of polar and non-polar organophosphorus pesticides from several water samples. The Fe3O4@G-TEOS-MTMOS nanocomposite was characterized using Fourier transform-infrared spectroscopy, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy and X-ray diffraction. Separation, determination and quantification were achieved using gas chromatography coupled with micro electron capture detector. Adsorption capacity of the sorbent was calculated using Langmuir equation. MSPE was linear in the range 100–1000 pg mL−1 for Phosphamidon and dimethoate, and 10–100 pg mL−1 for chlorpyrifos and diazinon, with limit of detection (S/N = 3) of 19.8, 23.7, 1.4 and 2.9 pg mL−1 for Phosphamidon, dimethoate, diazinon and chlorpyrifos, respectively. The LODs obtained is well below the maximum residual level (100 pg mL−1) as set by European Union for pesticides in drinking water. Acceptable precision (%RSD) was achieved for intra-day (1.3–8.7%, n = 3) and inter-day (7.6–17.8%, n = 15) analyses. Fe3O4@G-TEOS-MTMOS showed high adsorption capacity (54.4–76.3 mg g−1) for the selected OPPs. No pesticide residues were detected in the water samples analysed. Excellent extraction recoveries (83–105%) were obtained for the spiked OPPs from tap, river, lake and sea water samples. The newly synthesised Fe3O4@G-TEOS-MTMOS showed high potential as adsorbent for OPPs analysis.

Muhammad Afzal Kamboh - One of the best experts on this subject based on the ideXlab platform.

  • new magnetic graphene based inorganic organic sol gel hybrid nanocomposite for simultaneous analysis of polar and non polar organophosphorus pesticides from water samples using solid phase extraction
    Chemosphere, 2017
    Co-Authors: Hamid Rashidi Nodeh, Wan Aini Wan Ibrahim, Muhammad Afzal Kamboh, Mohd Marsin Sanagi
    Abstract:

    A new graphene-based tetraethoxysilane-methyltrimethoxysilane sol-gel hybrid magnetic nanocomposite (Fe3O4@G-TEOS-MTMOS) was synthesised, characterized and successfully applied in magnetic solid-phase extraction (MSPE) for simultaneous analysis of polar and non-polar organophosphorus pesticides from several water samples. The Fe3O4@G-TEOS-MTMOS nanocomposite was characterized using Fourier transform-infrared spectroscopy, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy and X-ray diffraction. Separation, determination and quantification were achieved using gas chromatography coupled with micro electron capture detector. Adsorption capacity of the sorbent was calculated using Langmuir equation. MSPE was linear in the range 100–1000 pg mL−1 for Phosphamidon and dimethoate, and 10–100 pg mL−1 for chlorpyrifos and diazinon, with limit of detection (S/N = 3) of 19.8, 23.7, 1.4 and 2.9 pg mL−1 for Phosphamidon, dimethoate, diazinon and chlorpyrifos, respectively. The LODs obtained is well below the maximum residual level (100 pg mL−1) as set by European Union for pesticides in drinking water. Acceptable precision (%RSD) was achieved for intra-day (1.3–8.7%, n = 3) and inter-day (7.6–17.8%, n = 15) analyses. Fe3O4@G-TEOS-MTMOS showed high adsorption capacity (54.4–76.3 mg g−1) for the selected OPPs. No pesticide residues were detected in the water samples analysed. Excellent extraction recoveries (83–105%) were obtained for the spiked OPPs from tap, river, lake and sea water samples. The newly synthesised Fe3O4@G-TEOS-MTMOS showed high potential as adsorbent for OPPs analysis.