Productivity Tool

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 61896 Experts worldwide ranked by ideXlab platform

Tao Bao - One of the best experts on this subject based on the ideXlab platform.

  • Apricot: An Optimizing Compiler and Productivity Tool for x86-compatible Many-core Coprocessors
    2013
    Co-Authors: Nishkam Ravi, Yi Yang, Tao Bao
    Abstract:

    Intel MIC (Many Integrated Core) is the first x86-based coprocessor architecture aimed at accelerating multi-core HPC applications. In the most common usage model, parallel code sections are offloaded to the MIC coprocessor using LEO (Language Extensions for Offload). The developer is responsible for identifying and specifying offloadable code regions, managing data transfers between the CPU and MIC and optimizing the application for performance, which requires some amount of effort and experimentation. In this paper, we present Apricot, an optimizing compiler and Productivity Tool for x86-compatible many-core coprocessors (such as Intel MIC) that minimizes developer effort by (i) automatically inserting LEO clauses for parallelizable code regions, (ii) selectively offloading some of the code regions to the coprocessor at runtime based on a cost model that we have developed, (iii) applying a set of optimizations for minimizing the data communication overhead and improving overall performance. Apricot is intended to assist programmers in porting existing multi-core applications and writing new ones to take advantage of the many-core coprocessor, while maximizing overall performance. Experiments with SpecOMP and NAS Parallel benchmarks show that Apricot can successfully transform OpenMP applications to run on the MIC coprocessor with good performance gains. Categories andSubject Descriptor

  • apricot an optimizing compiler and Productivity Tool for x86 compatible many core coprocessors
    International Conference on Supercomputing, 2012
    Co-Authors: Nishkam Ravi, Yi Yang, Tao Bao, Srimat T. Chakradhar
    Abstract:

    Intel MIC (Many Integrated Core) is the first x86-based coprocessor architecture aimed at accelerating multi-core HPC applications. In the most common usage model, parallel code sections are offloaded to the MIC coprocessor using LEO (Language Extensions for Offload). The developer is responsible for identifying and specifying offloadable code regions, managing data transfers between the CPU and MIC and optimizing the application for performance, which requires some amount of effort and experimentation. In this paper, we present Apricot, an optimizing compiler and Productivity Tool for x86-compatible many-core coprocessors (such as Intel MIC) that minimizes developer effort by (i) automatically inserting LEO clauses for parallelizable code regions, (ii) selectively offloading some of the code regions to the coprocessor at runtime based on a cost model that we have developed, (iii) applying a set ofoptimizations for minimizing the data communication overhead and improving overall performance. Apricot is intended to assist programmers in porting existing multi-core applications and writing new ones to take advantage of the many-core coprocessor, while maximizing overall performance. Experiments with SpecOMP and NAS Parallel benchmarks show that Apricot can successfully transform OpenMP applications to run on the MIC coprocessor with good performance gains.

Nishkam Ravi - One of the best experts on this subject based on the ideXlab platform.

  • Apricot: An Optimizing Compiler and Productivity Tool for x86-compatible Many-core Coprocessors
    2013
    Co-Authors: Nishkam Ravi, Yi Yang, Tao Bao
    Abstract:

    Intel MIC (Many Integrated Core) is the first x86-based coprocessor architecture aimed at accelerating multi-core HPC applications. In the most common usage model, parallel code sections are offloaded to the MIC coprocessor using LEO (Language Extensions for Offload). The developer is responsible for identifying and specifying offloadable code regions, managing data transfers between the CPU and MIC and optimizing the application for performance, which requires some amount of effort and experimentation. In this paper, we present Apricot, an optimizing compiler and Productivity Tool for x86-compatible many-core coprocessors (such as Intel MIC) that minimizes developer effort by (i) automatically inserting LEO clauses for parallelizable code regions, (ii) selectively offloading some of the code regions to the coprocessor at runtime based on a cost model that we have developed, (iii) applying a set of optimizations for minimizing the data communication overhead and improving overall performance. Apricot is intended to assist programmers in porting existing multi-core applications and writing new ones to take advantage of the many-core coprocessor, while maximizing overall performance. Experiments with SpecOMP and NAS Parallel benchmarks show that Apricot can successfully transform OpenMP applications to run on the MIC coprocessor with good performance gains. Categories andSubject Descriptor

  • apricot an optimizing compiler and Productivity Tool for x86 compatible many core coprocessors
    International Conference on Supercomputing, 2012
    Co-Authors: Nishkam Ravi, Yi Yang, Tao Bao, Srimat T. Chakradhar
    Abstract:

    Intel MIC (Many Integrated Core) is the first x86-based coprocessor architecture aimed at accelerating multi-core HPC applications. In the most common usage model, parallel code sections are offloaded to the MIC coprocessor using LEO (Language Extensions for Offload). The developer is responsible for identifying and specifying offloadable code regions, managing data transfers between the CPU and MIC and optimizing the application for performance, which requires some amount of effort and experimentation. In this paper, we present Apricot, an optimizing compiler and Productivity Tool for x86-compatible many-core coprocessors (such as Intel MIC) that minimizes developer effort by (i) automatically inserting LEO clauses for parallelizable code regions, (ii) selectively offloading some of the code regions to the coprocessor at runtime based on a cost model that we have developed, (iii) applying a set ofoptimizations for minimizing the data communication overhead and improving overall performance. Apricot is intended to assist programmers in porting existing multi-core applications and writing new ones to take advantage of the many-core coprocessor, while maximizing overall performance. Experiments with SpecOMP and NAS Parallel benchmarks show that Apricot can successfully transform OpenMP applications to run on the MIC coprocessor with good performance gains.

Srimat T. Chakradhar - One of the best experts on this subject based on the ideXlab platform.

  • apricot an optimizing compiler and Productivity Tool for x86 compatible many core coprocessors
    International Conference on Supercomputing, 2012
    Co-Authors: Nishkam Ravi, Yi Yang, Tao Bao, Srimat T. Chakradhar
    Abstract:

    Intel MIC (Many Integrated Core) is the first x86-based coprocessor architecture aimed at accelerating multi-core HPC applications. In the most common usage model, parallel code sections are offloaded to the MIC coprocessor using LEO (Language Extensions for Offload). The developer is responsible for identifying and specifying offloadable code regions, managing data transfers between the CPU and MIC and optimizing the application for performance, which requires some amount of effort and experimentation. In this paper, we present Apricot, an optimizing compiler and Productivity Tool for x86-compatible many-core coprocessors (such as Intel MIC) that minimizes developer effort by (i) automatically inserting LEO clauses for parallelizable code regions, (ii) selectively offloading some of the code regions to the coprocessor at runtime based on a cost model that we have developed, (iii) applying a set ofoptimizations for minimizing the data communication overhead and improving overall performance. Apricot is intended to assist programmers in porting existing multi-core applications and writing new ones to take advantage of the many-core coprocessor, while maximizing overall performance. Experiments with SpecOMP and NAS Parallel benchmarks show that Apricot can successfully transform OpenMP applications to run on the MIC coprocessor with good performance gains.

Yi Yang - One of the best experts on this subject based on the ideXlab platform.

  • Apricot: An Optimizing Compiler and Productivity Tool for x86-compatible Many-core Coprocessors
    2013
    Co-Authors: Nishkam Ravi, Yi Yang, Tao Bao
    Abstract:

    Intel MIC (Many Integrated Core) is the first x86-based coprocessor architecture aimed at accelerating multi-core HPC applications. In the most common usage model, parallel code sections are offloaded to the MIC coprocessor using LEO (Language Extensions for Offload). The developer is responsible for identifying and specifying offloadable code regions, managing data transfers between the CPU and MIC and optimizing the application for performance, which requires some amount of effort and experimentation. In this paper, we present Apricot, an optimizing compiler and Productivity Tool for x86-compatible many-core coprocessors (such as Intel MIC) that minimizes developer effort by (i) automatically inserting LEO clauses for parallelizable code regions, (ii) selectively offloading some of the code regions to the coprocessor at runtime based on a cost model that we have developed, (iii) applying a set of optimizations for minimizing the data communication overhead and improving overall performance. Apricot is intended to assist programmers in porting existing multi-core applications and writing new ones to take advantage of the many-core coprocessor, while maximizing overall performance. Experiments with SpecOMP and NAS Parallel benchmarks show that Apricot can successfully transform OpenMP applications to run on the MIC coprocessor with good performance gains. Categories andSubject Descriptor

  • apricot an optimizing compiler and Productivity Tool for x86 compatible many core coprocessors
    International Conference on Supercomputing, 2012
    Co-Authors: Nishkam Ravi, Yi Yang, Tao Bao, Srimat T. Chakradhar
    Abstract:

    Intel MIC (Many Integrated Core) is the first x86-based coprocessor architecture aimed at accelerating multi-core HPC applications. In the most common usage model, parallel code sections are offloaded to the MIC coprocessor using LEO (Language Extensions for Offload). The developer is responsible for identifying and specifying offloadable code regions, managing data transfers between the CPU and MIC and optimizing the application for performance, which requires some amount of effort and experimentation. In this paper, we present Apricot, an optimizing compiler and Productivity Tool for x86-compatible many-core coprocessors (such as Intel MIC) that minimizes developer effort by (i) automatically inserting LEO clauses for parallelizable code regions, (ii) selectively offloading some of the code regions to the coprocessor at runtime based on a cost model that we have developed, (iii) applying a set ofoptimizations for minimizing the data communication overhead and improving overall performance. Apricot is intended to assist programmers in porting existing multi-core applications and writing new ones to take advantage of the many-core coprocessor, while maximizing overall performance. Experiments with SpecOMP and NAS Parallel benchmarks show that Apricot can successfully transform OpenMP applications to run on the MIC coprocessor with good performance gains.

Boualem Benatallah - One of the best experts on this subject based on the ideXlab platform.