Protection Mechanism

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 118314 Experts worldwide ranked by ideXlab platform

Can Chen - One of the best experts on this subject based on the ideXlab platform.

  • myo inositol 1 phosphate synthase ino 1 functions as a Protection Mechanism in corynebacterium glutamicum under oxidative stress
    MicrobiologyOpen, 2019
    Co-Authors: Can Chen, Keqi Chen, Bing Zhang, Tao Su, Guizhi Li, Meiru Si
    Abstract:

    Reactive oxygen species (ROS) generated in aerobic metabolism and oxidative stress lead to macromolecules damage, such as to proteins, lipids, and DNA, which can be eliminated by the redox buffer mycothiol (AcCys-GlcN-Ins, MSH). Myo-inositol-phosphate synthase (Ino-1) catalyzes the first committed step in the synthesis of MSH, thus playing a critical role in the growth of the organism. Although Ino-1s have been systematically studied in eukaryotes, their physiological and biochemical functions remain largely unknown in bacteria. In this study, we report that Ino-1 plays an important role in oxidative stress resistance in the gram-positive Actinobacteria Corynebacterium glutamicum. Deletion of the ino-1 gene resulted in a decrease in cell viability, an increase in ROS production, and the aggravation of protein carbonylation levels under various stress conditions. The physiological roles of Ino-1 in the resistance to oxidative stresses were corroborated by the absence of MSH in the Δino-1 mutant. In addition, we found that the homologous expression of Ino-1 in C. glutamicum yielded a functionally active protein, while when expressed in Escherichia coliBL21(DE3), it lacked measurable activity. An examination of the molecular mass (Mr) suggested that Ino-1 expressed in E. coliBL21(DE3) was not folded in a catalytically competent conformation. Together, the results unequivocally showed that Ino-1 was important for the mediation of oxidative resistance by C. glutamicum.

  • Myo‐inositol‐1‐phosphate synthase (Ino‐1) functions as a Protection Mechanism in Corynebacterium glutamicum under oxidative stress
    Wiley, 2019
    Co-Authors: Can Chen, Keqi Chen, Bing Zhang, Junfeng Pan
    Abstract:

    Abstract Reactive oxygen species (ROS) generated in aerobic metabolism and oxidative stress lead to macromolecules damage, such as to proteins, lipids, and DNA, which can be eliminated by the redox buffer mycothiol (AcCys‐GlcN‐Ins, MSH). Myo‐inositol‐phosphate synthase (Ino‐1) catalyzes the first committed step in the synthesis of MSH, thus playing a critical role in the growth of the organism. Although Ino‐1s have been systematically studied in eukaryotes, their physiological and biochemical functions remain largely unknown in bacteria. In this study, we report that Ino‐1 plays an important role in oxidative stress resistance in the gram‐positive Actinobacteria Corynebacterium glutamicum. Deletion of the ino‐1 gene resulted in a decrease in cell viability, an increase in ROS production, and the aggravation of protein carbonylation levels under various stress conditions. The physiological roles of Ino‐1 in the resistance to oxidative stresses were corroborated by the absence of MSH in the Δino‐1 mutant. In addition, we found that the homologous expression of Ino‐1 in C. glutamicum yielded a functionally active protein, while when expressed in Escherichia coliBL21(DE3), it lacked measurable activity. An examination of the molecular mass (Mr) suggested that Ino‐1 expressed in E. coliBL21(DE3) was not folded in a catalytically competent conformation. Together, the results unequivocally showed that Ino‐1 was important for the mediation of oxidative resistance by C. glutamicum

Meiru Si - One of the best experts on this subject based on the ideXlab platform.

  • myo inositol 1 phosphate synthase ino 1 functions as a Protection Mechanism in corynebacterium glutamicum under oxidative stress
    MicrobiologyOpen, 2019
    Co-Authors: Can Chen, Keqi Chen, Bing Zhang, Tao Su, Guizhi Li, Meiru Si
    Abstract:

    Reactive oxygen species (ROS) generated in aerobic metabolism and oxidative stress lead to macromolecules damage, such as to proteins, lipids, and DNA, which can be eliminated by the redox buffer mycothiol (AcCys-GlcN-Ins, MSH). Myo-inositol-phosphate synthase (Ino-1) catalyzes the first committed step in the synthesis of MSH, thus playing a critical role in the growth of the organism. Although Ino-1s have been systematically studied in eukaryotes, their physiological and biochemical functions remain largely unknown in bacteria. In this study, we report that Ino-1 plays an important role in oxidative stress resistance in the gram-positive Actinobacteria Corynebacterium glutamicum. Deletion of the ino-1 gene resulted in a decrease in cell viability, an increase in ROS production, and the aggravation of protein carbonylation levels under various stress conditions. The physiological roles of Ino-1 in the resistance to oxidative stresses were corroborated by the absence of MSH in the Δino-1 mutant. In addition, we found that the homologous expression of Ino-1 in C. glutamicum yielded a functionally active protein, while when expressed in Escherichia coliBL21(DE3), it lacked measurable activity. An examination of the molecular mass (Mr) suggested that Ino-1 expressed in E. coliBL21(DE3) was not folded in a catalytically competent conformation. Together, the results unequivocally showed that Ino-1 was important for the mediation of oxidative resistance by C. glutamicum.

Achim Trebst - One of the best experts on this subject based on the ideXlab platform.

  • singlet oxygen production in photosystem ii and related Protection Mechanism
    Photosynthesis Research, 2008
    Co-Authors: Anja Kriegerliszkay, Christian Fufezan, Achim Trebst
    Abstract:

    High-light illumination of photosynthetic organisms stimulates the production of singlet oxygen by photosystem II (PSII) and causes photo-oxidative stress. In the PSII reaction centre, singlet oxygen is generated by the interaction of molecular oxygen with the excited triplet state of chlorophyll (Chl). The triplet Chl is formed via charge recombination of the light-induced charge pair. Changes in the midpoint potential of the primary electron donor P680 of the primary acceptor pheophytin or of the quinone acceptor QA, modulate the pathway of charge recombination in PSII and influence the yield of singlet oxygen formation. The involvement of singlet oxygen in the process of photoinhibition is discussed. Singlet oxygen is efficiently quenched by β-carotene, tocopherol or plastoquinone. If not quenched, it can trigger the up-regulation of genes, which are involved in the molecular defence response of photosynthetic organisms against photo-oxidative stress.

  • singlet oxygen production in photosystem ii and related Protection Mechanism
    Photosynthesis Research, 2008
    Co-Authors: Anja Kriegerliszkay, Christian Fufezan, Achim Trebst
    Abstract:

    High-light illumination of photosynthetic organisms stimulates the production of singlet oxygen by photosystem II (PSII) and causes photo-oxidative stress. In the PSII reaction centre, singlet oxygen is generated by the interaction of molecular oxygen with the excited triplet state of chlorophyll (Chl). The triplet Chl is formed via charge recombination of the light-induced charge pair. Changes in the midpoint potential of the primary electron donor P(680) of the primary acceptor pheophytin or of the quinone acceptor Q(A), modulate the pathway of charge recombination in PSII and influence the yield of singlet oxygen formation. The involvement of singlet oxygen in the process of photoinhibition is discussed. Singlet oxygen is efficiently quenched by beta-carotene, tocopherol or plastoquinone. If not quenched, it can trigger the up-regulation of genes, which are involved in the molecular defence response of photosynthetic organisms against photo-oxidative stress.

Anja Kriegerliszkay - One of the best experts on this subject based on the ideXlab platform.

  • singlet oxygen production in photosystem ii and related Protection Mechanism
    Photosynthesis Research, 2008
    Co-Authors: Anja Kriegerliszkay, Christian Fufezan, Achim Trebst
    Abstract:

    High-light illumination of photosynthetic organisms stimulates the production of singlet oxygen by photosystem II (PSII) and causes photo-oxidative stress. In the PSII reaction centre, singlet oxygen is generated by the interaction of molecular oxygen with the excited triplet state of chlorophyll (Chl). The triplet Chl is formed via charge recombination of the light-induced charge pair. Changes in the midpoint potential of the primary electron donor P680 of the primary acceptor pheophytin or of the quinone acceptor QA, modulate the pathway of charge recombination in PSII and influence the yield of singlet oxygen formation. The involvement of singlet oxygen in the process of photoinhibition is discussed. Singlet oxygen is efficiently quenched by β-carotene, tocopherol or plastoquinone. If not quenched, it can trigger the up-regulation of genes, which are involved in the molecular defence response of photosynthetic organisms against photo-oxidative stress.

  • singlet oxygen production in photosystem ii and related Protection Mechanism
    Photosynthesis Research, 2008
    Co-Authors: Anja Kriegerliszkay, Christian Fufezan, Achim Trebst
    Abstract:

    High-light illumination of photosynthetic organisms stimulates the production of singlet oxygen by photosystem II (PSII) and causes photo-oxidative stress. In the PSII reaction centre, singlet oxygen is generated by the interaction of molecular oxygen with the excited triplet state of chlorophyll (Chl). The triplet Chl is formed via charge recombination of the light-induced charge pair. Changes in the midpoint potential of the primary electron donor P(680) of the primary acceptor pheophytin or of the quinone acceptor Q(A), modulate the pathway of charge recombination in PSII and influence the yield of singlet oxygen formation. The involvement of singlet oxygen in the process of photoinhibition is discussed. Singlet oxygen is efficiently quenched by beta-carotene, tocopherol or plastoquinone. If not quenched, it can trigger the up-regulation of genes, which are involved in the molecular defence response of photosynthetic organisms against photo-oxidative stress.

Keqi Chen - One of the best experts on this subject based on the ideXlab platform.

  • myo inositol 1 phosphate synthase ino 1 functions as a Protection Mechanism in corynebacterium glutamicum under oxidative stress
    MicrobiologyOpen, 2019
    Co-Authors: Can Chen, Keqi Chen, Bing Zhang, Tao Su, Guizhi Li, Meiru Si
    Abstract:

    Reactive oxygen species (ROS) generated in aerobic metabolism and oxidative stress lead to macromolecules damage, such as to proteins, lipids, and DNA, which can be eliminated by the redox buffer mycothiol (AcCys-GlcN-Ins, MSH). Myo-inositol-phosphate synthase (Ino-1) catalyzes the first committed step in the synthesis of MSH, thus playing a critical role in the growth of the organism. Although Ino-1s have been systematically studied in eukaryotes, their physiological and biochemical functions remain largely unknown in bacteria. In this study, we report that Ino-1 plays an important role in oxidative stress resistance in the gram-positive Actinobacteria Corynebacterium glutamicum. Deletion of the ino-1 gene resulted in a decrease in cell viability, an increase in ROS production, and the aggravation of protein carbonylation levels under various stress conditions. The physiological roles of Ino-1 in the resistance to oxidative stresses were corroborated by the absence of MSH in the Δino-1 mutant. In addition, we found that the homologous expression of Ino-1 in C. glutamicum yielded a functionally active protein, while when expressed in Escherichia coliBL21(DE3), it lacked measurable activity. An examination of the molecular mass (Mr) suggested that Ino-1 expressed in E. coliBL21(DE3) was not folded in a catalytically competent conformation. Together, the results unequivocally showed that Ino-1 was important for the mediation of oxidative resistance by C. glutamicum.

  • Myo‐inositol‐1‐phosphate synthase (Ino‐1) functions as a Protection Mechanism in Corynebacterium glutamicum under oxidative stress
    Wiley, 2019
    Co-Authors: Can Chen, Keqi Chen, Bing Zhang, Junfeng Pan
    Abstract:

    Abstract Reactive oxygen species (ROS) generated in aerobic metabolism and oxidative stress lead to macromolecules damage, such as to proteins, lipids, and DNA, which can be eliminated by the redox buffer mycothiol (AcCys‐GlcN‐Ins, MSH). Myo‐inositol‐phosphate synthase (Ino‐1) catalyzes the first committed step in the synthesis of MSH, thus playing a critical role in the growth of the organism. Although Ino‐1s have been systematically studied in eukaryotes, their physiological and biochemical functions remain largely unknown in bacteria. In this study, we report that Ino‐1 plays an important role in oxidative stress resistance in the gram‐positive Actinobacteria Corynebacterium glutamicum. Deletion of the ino‐1 gene resulted in a decrease in cell viability, an increase in ROS production, and the aggravation of protein carbonylation levels under various stress conditions. The physiological roles of Ino‐1 in the resistance to oxidative stresses were corroborated by the absence of MSH in the Δino‐1 mutant. In addition, we found that the homologous expression of Ino‐1 in C. glutamicum yielded a functionally active protein, while when expressed in Escherichia coliBL21(DE3), it lacked measurable activity. An examination of the molecular mass (Mr) suggested that Ino‐1 expressed in E. coliBL21(DE3) was not folded in a catalytically competent conformation. Together, the results unequivocally showed that Ino‐1 was important for the mediation of oxidative resistance by C. glutamicum