Pureed Fruit

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 18 Experts worldwide ranked by ideXlab platform

C I Nindo - One of the best experts on this subject based on the ideXlab platform.

  • effect of ultrasound frequency on antioxidant activity total phenolic and anthocyanin content of red raspberry puree
    Ultrasonics Sonochemistry, 2013
    Co-Authors: Amir Golmohamadi, Gregory Moller, Joseph R Powers, C I Nindo
    Abstract:

    Ultrasound in the 20-1000 kHz range show unique propagation characteristics in fluid media and possess energy that can break down Fruit matrices to facilitate the extraction of valuable bioactive compounds. Red raspberries carry significant amounts of specific antioxidants, including ellagitannins and anthocyanins that are important for human health. The objective of this study was to investigate the effects of ultrasound frequencies associated with cavitation (20 kHz) and microstreaming (490 and 986 kHz) on total antioxidant activity (AOA), total phenolics content (TPC), and total monomeric anthocyanin content (ACY) of red raspberry puree prepared from crushed berries. The Pureed Fruit was subjected to high-intensity (20 kHz) and higher frequency-low intensity (490 and 986 kHz) ultrasound for 30 min. The temperature of treated purees increased to a maximum of 56 °C with 986 kHz. Sonication at 20 and 490 kHz significantly (p<0.05) affected the AOA, ACY, and TPC of red raspberry puree, while 986 kHz had no significant effect on ACY and AOA (p<0.05). In all cases, ultrasound treatment had significant and positive effect on at least one of the measured parameters up to 30 min. Sonication beyond 10 min (and up to 30 min) using 20 kHz either produced no change or caused a drop in AOA and ACY. However, for 986 and 20 kHz, TPC, increased by 10% and 9.5%, respectively after 30 min (p<0.05) compared to the control. At 20 kHz, AOA and ACY increased by 17.3% and 12.6% after 10 min. It was demonstrated that 20 kHz ultrasound treatment, when limited to 10 min, was the most effective for extraction of bioactive compounds in red raspberry compared to 490 and 986 kHz although the effect could be similar at the higher frequencies if different amplitudes are used.

Amir Golmohamadi - One of the best experts on this subject based on the ideXlab platform.

  • effect of ultrasound frequency on antioxidant activity total phenolic and anthocyanin content of red raspberry puree
    Ultrasonics Sonochemistry, 2013
    Co-Authors: Amir Golmohamadi, Gregory Moller, Joseph R Powers, C I Nindo
    Abstract:

    Ultrasound in the 20-1000 kHz range show unique propagation characteristics in fluid media and possess energy that can break down Fruit matrices to facilitate the extraction of valuable bioactive compounds. Red raspberries carry significant amounts of specific antioxidants, including ellagitannins and anthocyanins that are important for human health. The objective of this study was to investigate the effects of ultrasound frequencies associated with cavitation (20 kHz) and microstreaming (490 and 986 kHz) on total antioxidant activity (AOA), total phenolics content (TPC), and total monomeric anthocyanin content (ACY) of red raspberry puree prepared from crushed berries. The Pureed Fruit was subjected to high-intensity (20 kHz) and higher frequency-low intensity (490 and 986 kHz) ultrasound for 30 min. The temperature of treated purees increased to a maximum of 56 °C with 986 kHz. Sonication at 20 and 490 kHz significantly (p<0.05) affected the AOA, ACY, and TPC of red raspberry puree, while 986 kHz had no significant effect on ACY and AOA (p<0.05). In all cases, ultrasound treatment had significant and positive effect on at least one of the measured parameters up to 30 min. Sonication beyond 10 min (and up to 30 min) using 20 kHz either produced no change or caused a drop in AOA and ACY. However, for 986 and 20 kHz, TPC, increased by 10% and 9.5%, respectively after 30 min (p<0.05) compared to the control. At 20 kHz, AOA and ACY increased by 17.3% and 12.6% after 10 min. It was demonstrated that 20 kHz ultrasound treatment, when limited to 10 min, was the most effective for extraction of bioactive compounds in red raspberry compared to 490 and 986 kHz although the effect could be similar at the higher frequencies if different amplitudes are used.

Joseph R Powers - One of the best experts on this subject based on the ideXlab platform.

  • effect of ultrasound frequency on antioxidant activity total phenolic and anthocyanin content of red raspberry puree
    Ultrasonics Sonochemistry, 2013
    Co-Authors: Amir Golmohamadi, Gregory Moller, Joseph R Powers, C I Nindo
    Abstract:

    Ultrasound in the 20-1000 kHz range show unique propagation characteristics in fluid media and possess energy that can break down Fruit matrices to facilitate the extraction of valuable bioactive compounds. Red raspberries carry significant amounts of specific antioxidants, including ellagitannins and anthocyanins that are important for human health. The objective of this study was to investigate the effects of ultrasound frequencies associated with cavitation (20 kHz) and microstreaming (490 and 986 kHz) on total antioxidant activity (AOA), total phenolics content (TPC), and total monomeric anthocyanin content (ACY) of red raspberry puree prepared from crushed berries. The Pureed Fruit was subjected to high-intensity (20 kHz) and higher frequency-low intensity (490 and 986 kHz) ultrasound for 30 min. The temperature of treated purees increased to a maximum of 56 °C with 986 kHz. Sonication at 20 and 490 kHz significantly (p<0.05) affected the AOA, ACY, and TPC of red raspberry puree, while 986 kHz had no significant effect on ACY and AOA (p<0.05). In all cases, ultrasound treatment had significant and positive effect on at least one of the measured parameters up to 30 min. Sonication beyond 10 min (and up to 30 min) using 20 kHz either produced no change or caused a drop in AOA and ACY. However, for 986 and 20 kHz, TPC, increased by 10% and 9.5%, respectively after 30 min (p<0.05) compared to the control. At 20 kHz, AOA and ACY increased by 17.3% and 12.6% after 10 min. It was demonstrated that 20 kHz ultrasound treatment, when limited to 10 min, was the most effective for extraction of bioactive compounds in red raspberry compared to 490 and 986 kHz although the effect could be similar at the higher frequencies if different amplitudes are used.

Gregory Moller - One of the best experts on this subject based on the ideXlab platform.

  • effect of ultrasound frequency on antioxidant activity total phenolic and anthocyanin content of red raspberry puree
    Ultrasonics Sonochemistry, 2013
    Co-Authors: Amir Golmohamadi, Gregory Moller, Joseph R Powers, C I Nindo
    Abstract:

    Ultrasound in the 20-1000 kHz range show unique propagation characteristics in fluid media and possess energy that can break down Fruit matrices to facilitate the extraction of valuable bioactive compounds. Red raspberries carry significant amounts of specific antioxidants, including ellagitannins and anthocyanins that are important for human health. The objective of this study was to investigate the effects of ultrasound frequencies associated with cavitation (20 kHz) and microstreaming (490 and 986 kHz) on total antioxidant activity (AOA), total phenolics content (TPC), and total monomeric anthocyanin content (ACY) of red raspberry puree prepared from crushed berries. The Pureed Fruit was subjected to high-intensity (20 kHz) and higher frequency-low intensity (490 and 986 kHz) ultrasound for 30 min. The temperature of treated purees increased to a maximum of 56 °C with 986 kHz. Sonication at 20 and 490 kHz significantly (p<0.05) affected the AOA, ACY, and TPC of red raspberry puree, while 986 kHz had no significant effect on ACY and AOA (p<0.05). In all cases, ultrasound treatment had significant and positive effect on at least one of the measured parameters up to 30 min. Sonication beyond 10 min (and up to 30 min) using 20 kHz either produced no change or caused a drop in AOA and ACY. However, for 986 and 20 kHz, TPC, increased by 10% and 9.5%, respectively after 30 min (p<0.05) compared to the control. At 20 kHz, AOA and ACY increased by 17.3% and 12.6% after 10 min. It was demonstrated that 20 kHz ultrasound treatment, when limited to 10 min, was the most effective for extraction of bioactive compounds in red raspberry compared to 490 and 986 kHz although the effect could be similar at the higher frequencies if different amplitudes are used.

Hofman K J - One of the best experts on this subject based on the ideXlab platform.

  • Evidence for high sugar content of baby foods in South Africa
    'South African Medical Association NPC', 2019
    Co-Authors: Marais N C, Christofides N J, Erzse A, Hofman K J
    Abstract:

    Background. Early-life exposure to excess sugar affects eating behaviour and creates a predisposition to non-communicable diseases (NCDs). While reducing sugar consumption has been high on the public health agenda, little is known about the sugar content of baby foods.Objectives. To describe and analyse the sugar content of baby foods in South Africa (SA).Methods. A cross-sectional study was conducted to analyse the sugar content of baby foods. The study sample included commercially available baby foods targeted at children aged <12 months, sold in supermarkets and by other major retailers in SA. Primary data were obtained from the packaging, and sugar content was compared with recommended intake guidelines. Bivariate analyses were conducted to determine whether there were any associations between the sugar content, added sugar and the characteristics of foods.Results. Over 70% of products were sweet in taste, with one in four containing added sugars. Sugar content was high in 78% of the foods sampled. Over 80% of cereals and Pureed desserts contained added sugar. Fewer than 10% of Pureed composite meal and Pureed Fruit and vege­table categories contained added sugar. Most products adhered to SA labelling standards, but none had front-of-pack nutritional information.Conclusions. The SA baby food market is characterised by products with a high sugar content, promoting an environment that encourages development of sweet-taste preferences and in the long term contributing to the rising burden of NCDs. There is an urgent need for mandatory regulation of sugar in baby foods.