Pyrus communis

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 3147 Experts worldwide ranked by ideXlab platform

Alessandro Cestaro - One of the best experts on this subject based on the ideXlab platform.

  • pseudo chromosome length genome assembly of a double haploid bartlett pear Pyrus communis l
    GigaScience, 2019
    Co-Authors: Gareth Linsmith, Stephane Rombauts, Sara Montanari, Cecilia H Deng, Jeanmarc Celton, Philippe Guerif, Chang Liu, Rolf Lohaus, Jason D Zurn, Alessandro Cestaro
    Abstract:

    Background We report an improved assembly and scaffolding of the European pear (Pyrus communis L.) genome (referred to as BartlettDHv2.0), obtained using a combination of Pacific Biosciences RSII long-read sequencing, Bionano optical mapping, chromatin interaction capture (Hi-C), and genetic mapping. The sample selected for sequencing is a double haploid derived from the same "Bartlett" reference pear that was previously sequenced. Sequencing of di-haploid plants makes assembly more tractable in highly heterozygous species such as P. communis. Findings A total of 496.9 Mb corresponding to 97% of the estimated genome size were assembled into 494 scaffolds. Hi-C data and a high-density genetic map allowed us to anchor and orient 87% of the sequence on the 17 pear chromosomes. Approximately 50% (247 Mb) of the genome consists of repetitive sequences. Gene annotation confirmed the presence of 37,445 protein-coding genes, which is 13% fewer than previously predicted. Conclusions We showed that the use of a doubled-haploid plant is an effective solution to the problems presented by high levels of heterozygosity and duplication for the generation of high-quality genome assemblies. We present a high-quality chromosome-scale assembly of the European pear Pyrus communis and demostrate its high degree of synteny with the genomes of Malus x Domestica and Pyrus x bretschneideri.

  • pseudo chromosome length genome assembly of a double haploid bartlett pear Pyrus communis l
    bioRxiv, 2019
    Co-Authors: Gareth Linsmith, Stephane Rombauts, Sara Montanari, Cecilia H Deng, Jeanmarc Celton, Philippe Guerif, Chang Liu, Rolf Lohaus, Jason D Zurn, Alessandro Cestaro
    Abstract:

    We report an improved assembly and scaffolding of the European pear (Pyrus communis L.) genome (referred to as BartlettDHv2.0), obtained using a combination of Pacific Biosciences RSII Long read sequencing (PacBio), Bionano optical mapping, chromatin interaction capture (Hi-C), and genetic mapping. A total of 496.9 million bases (Mb) corresponding to 97% of the estimated genome size were assembled into 494 scaffolds. Hi-C data and a high-density genetic map allowed us to anchor and orient 87% of the sequence on the 17 chromosomes of the pear genome. About 50% (247 Mb) of the genome consists of repetitive sequences. Comparison with previous assemblies of Pyrus communis and Pyrus x bretschneideri confirmed the presence of 37,445 protein-coding genes, which is 13% fewer than previously predicted.

  • Pyrus communis chromosome scale assembly
    bioRxiv, 2019
    Co-Authors: Gareth Linsmith, Stephane Rombauts, Sara Montanari, Cecilia H Deng, Jeanmarc Celton, Philippe Guerif, Chang Liu, Rolf Lohaus, Jason D Zurn, Alessandro Cestaro
    Abstract:

    We report an improved assembly and scaffolding of the European pear (Pyrus communis L.) genome (referred to as BartlettDHv2.0), obtained using a combination of Pacific Biosciences RSII Long read sequencing (PacBio), Bionano optical mapping, chromatin interaction capture (Hi-C), and genetic mapping. A total of 496.9 million bases (Mb) corresponding to 97% of the estimated genome size were assembled into 494 scaffolds. Hi-C data and a high-density genetic map allowed us to anchor and orient 87% of the sequence on the 17 chromosomes of the pear genome. About 50% (247 Mb) of the genome consists of repetitive sequences. Comparison with previous assemblies of Pyrus communis and Pyrus x bretschneideri confirmed the presence of 37,445 protein-coding genes, which is 13% fewer than previously predicted.

  • The Draft Genome Sequence of European Pear (Pyrus communis L. 'Bartlett')
    PLoS ONE, 2014
    Co-Authors: David Chagné, Alessandro Cestaro, Ross N. Crowhurst, Massimo Pindo, Amali Thrimawithana, Cecilia Deng, Hilary Ireland, Mark Fiers, Helge Dzierzon, Paolo Fontana
    Abstract:

    We present a draft assembly of the genome of European pear (Pyrus communis) `Bartlett'. Our assembly was developed employing second generation sequencing technology (Roche 454), from single-end, 2 kb, and 7 kb insert paired-end reads using Newbler (version 2.7). It contains 142,083 scaffolds greater than 499 bases (maximum scaffold length of 1.2 Mb) and covers a total of 577.3 Mb, representing most of the expected 600 Mb Pyrus genome. A total of 829,823 putative single nucleotide polymorphisms (SNPs) were detected using re-sequencing of `Louise Bonne de Jersey' and `Old Home'. A total of 2,279 genetically mapped SNP markers anchor 171 Mb of the assembled genome. Ab initio gene prediction combined with prediction based on homology searching detected 43,419 putative gene models. Of these, 1219 proteins (556 clusters) are unique to European pear compared to 12 other sequenced plant genomes. Analysis of the expansin gene family provided an example of the quality of the gene prediction and an insight into the relationships among one class of cell wall related genes that control fruit softening in both European pear and apple (Malusxdomestica). The `Bartlett' genome assembly v1.0 (http://www.rosaceae.org/species/Pyrus/Pyrus_communis/genome_v1.0) is an invaluable tool for identifying the genetic control of key horticultural traits in pear and will enable the wide application of marker-assisted and genomic selection that will enhance the speed and efficiency of pear cultivar development.

Gareth Linsmith - One of the best experts on this subject based on the ideXlab platform.

  • pseudo chromosome length genome assembly of a double haploid bartlett pear Pyrus communis l
    GigaScience, 2019
    Co-Authors: Gareth Linsmith, Stephane Rombauts, Sara Montanari, Cecilia H Deng, Jeanmarc Celton, Philippe Guerif, Chang Liu, Rolf Lohaus, Jason D Zurn, Alessandro Cestaro
    Abstract:

    Background We report an improved assembly and scaffolding of the European pear (Pyrus communis L.) genome (referred to as BartlettDHv2.0), obtained using a combination of Pacific Biosciences RSII long-read sequencing, Bionano optical mapping, chromatin interaction capture (Hi-C), and genetic mapping. The sample selected for sequencing is a double haploid derived from the same "Bartlett" reference pear that was previously sequenced. Sequencing of di-haploid plants makes assembly more tractable in highly heterozygous species such as P. communis. Findings A total of 496.9 Mb corresponding to 97% of the estimated genome size were assembled into 494 scaffolds. Hi-C data and a high-density genetic map allowed us to anchor and orient 87% of the sequence on the 17 pear chromosomes. Approximately 50% (247 Mb) of the genome consists of repetitive sequences. Gene annotation confirmed the presence of 37,445 protein-coding genes, which is 13% fewer than previously predicted. Conclusions We showed that the use of a doubled-haploid plant is an effective solution to the problems presented by high levels of heterozygosity and duplication for the generation of high-quality genome assemblies. We present a high-quality chromosome-scale assembly of the European pear Pyrus communis and demostrate its high degree of synteny with the genomes of Malus x Domestica and Pyrus x bretschneideri.

  • Pseudo-chromosome–length genome assembly of a double haploid “Bartlett” pear (Pyrus communis L.)
    GigaScience, 2019
    Co-Authors: Yves Van de peer, Gareth Linsmith, Stephane Rombauts, Sara Montanari, Jeanmarc Celton, Philippe Guerif, Chang Liu, Rolf Lohaus, Cecilia Deng, Jason Zurn
    Abstract:

    Background: We report an improved assembly and scaffolding of the European pear (Pyrus communis L.) genome (referred to as BartlettDHv2.0), obtained using a combination of Pacific Biosciences RSII long-read sequencing, Bionano optical mapping, chromatin interaction capture (Hi-C), and genetic mapping. The sample selected for sequencing is a double haploid derived from the same "Bartlett" reference pear that was previously sequenced. Sequencing of di-haploid plants makes assembly more tractable in highly heterozygous species such as P. communis. Findings: A total of 496.9 Mb corresponding to 97% of the estimated genome size were assembled into 494 scaffolds. Hi-C data and a high-density genetic map allowed us to anchor and orient 87% of the sequence on the 17 pear chromosomes. Approximately 50% (247 Mb) of the genome consists of repetitive sequences. Gene annotation confirmed the presence of 37,445 protein-coding genes, which is 13% fewer than previously predicted. Conclusions: We showed that the use of a doubled-haploid plant is an effective solution to the problems presented by high levels of heterozygosity and duplication for the generation of high-quality genome assemblies. We present a high-quality chromosome-scale assembly of the European pear Pyrus communis and demostrate its high degree of synteny with the genomes of Malus x Domestica and Pyrus x bretschneideri.

  • pseudo chromosome length genome assembly of a double haploid bartlett pear Pyrus communis l
    bioRxiv, 2019
    Co-Authors: Gareth Linsmith, Stephane Rombauts, Sara Montanari, Cecilia H Deng, Jeanmarc Celton, Philippe Guerif, Chang Liu, Rolf Lohaus, Jason D Zurn, Alessandro Cestaro
    Abstract:

    We report an improved assembly and scaffolding of the European pear (Pyrus communis L.) genome (referred to as BartlettDHv2.0), obtained using a combination of Pacific Biosciences RSII Long read sequencing (PacBio), Bionano optical mapping, chromatin interaction capture (Hi-C), and genetic mapping. A total of 496.9 million bases (Mb) corresponding to 97% of the estimated genome size were assembled into 494 scaffolds. Hi-C data and a high-density genetic map allowed us to anchor and orient 87% of the sequence on the 17 chromosomes of the pear genome. About 50% (247 Mb) of the genome consists of repetitive sequences. Comparison with previous assemblies of Pyrus communis and Pyrus x bretschneideri confirmed the presence of 37,445 protein-coding genes, which is 13% fewer than previously predicted.

  • Pyrus communis chromosome scale assembly
    bioRxiv, 2019
    Co-Authors: Gareth Linsmith, Stephane Rombauts, Sara Montanari, Cecilia H Deng, Jeanmarc Celton, Philippe Guerif, Chang Liu, Rolf Lohaus, Jason D Zurn, Alessandro Cestaro
    Abstract:

    We report an improved assembly and scaffolding of the European pear (Pyrus communis L.) genome (referred to as BartlettDHv2.0), obtained using a combination of Pacific Biosciences RSII Long read sequencing (PacBio), Bionano optical mapping, chromatin interaction capture (Hi-C), and genetic mapping. A total of 496.9 million bases (Mb) corresponding to 97% of the estimated genome size were assembled into 494 scaffolds. Hi-C data and a high-density genetic map allowed us to anchor and orient 87% of the sequence on the 17 chromosomes of the pear genome. About 50% (247 Mb) of the genome consists of repetitive sequences. Comparison with previous assemblies of Pyrus communis and Pyrus x bretschneideri confirmed the presence of 37,445 protein-coding genes, which is 13% fewer than previously predicted.

Jason Zurn - One of the best experts on this subject based on the ideXlab platform.

  • Pseudo-chromosome–length genome assembly of a double haploid “Bartlett” pear (Pyrus communis L.)
    GigaScience, 2019
    Co-Authors: Yves Van de peer, Gareth Linsmith, Stephane Rombauts, Sara Montanari, Jeanmarc Celton, Philippe Guerif, Chang Liu, Rolf Lohaus, Cecilia Deng, Jason Zurn
    Abstract:

    Background: We report an improved assembly and scaffolding of the European pear (Pyrus communis L.) genome (referred to as BartlettDHv2.0), obtained using a combination of Pacific Biosciences RSII long-read sequencing, Bionano optical mapping, chromatin interaction capture (Hi-C), and genetic mapping. The sample selected for sequencing is a double haploid derived from the same "Bartlett" reference pear that was previously sequenced. Sequencing of di-haploid plants makes assembly more tractable in highly heterozygous species such as P. communis. Findings: A total of 496.9 Mb corresponding to 97% of the estimated genome size were assembled into 494 scaffolds. Hi-C data and a high-density genetic map allowed us to anchor and orient 87% of the sequence on the 17 pear chromosomes. Approximately 50% (247 Mb) of the genome consists of repetitive sequences. Gene annotation confirmed the presence of 37,445 protein-coding genes, which is 13% fewer than previously predicted. Conclusions: We showed that the use of a doubled-haploid plant is an effective solution to the problems presented by high levels of heterozygosity and duplication for the generation of high-quality genome assemblies. We present a high-quality chromosome-scale assembly of the European pear Pyrus communis and demostrate its high degree of synteny with the genomes of Malus x Domestica and Pyrus x bretschneideri.

Stephane Rombauts - One of the best experts on this subject based on the ideXlab platform.

  • pseudo chromosome length genome assembly of a double haploid bartlett pear Pyrus communis l
    GigaScience, 2019
    Co-Authors: Gareth Linsmith, Stephane Rombauts, Sara Montanari, Cecilia H Deng, Jeanmarc Celton, Philippe Guerif, Chang Liu, Rolf Lohaus, Jason D Zurn, Alessandro Cestaro
    Abstract:

    Background We report an improved assembly and scaffolding of the European pear (Pyrus communis L.) genome (referred to as BartlettDHv2.0), obtained using a combination of Pacific Biosciences RSII long-read sequencing, Bionano optical mapping, chromatin interaction capture (Hi-C), and genetic mapping. The sample selected for sequencing is a double haploid derived from the same "Bartlett" reference pear that was previously sequenced. Sequencing of di-haploid plants makes assembly more tractable in highly heterozygous species such as P. communis. Findings A total of 496.9 Mb corresponding to 97% of the estimated genome size were assembled into 494 scaffolds. Hi-C data and a high-density genetic map allowed us to anchor and orient 87% of the sequence on the 17 pear chromosomes. Approximately 50% (247 Mb) of the genome consists of repetitive sequences. Gene annotation confirmed the presence of 37,445 protein-coding genes, which is 13% fewer than previously predicted. Conclusions We showed that the use of a doubled-haploid plant is an effective solution to the problems presented by high levels of heterozygosity and duplication for the generation of high-quality genome assemblies. We present a high-quality chromosome-scale assembly of the European pear Pyrus communis and demostrate its high degree of synteny with the genomes of Malus x Domestica and Pyrus x bretschneideri.

  • Pseudo-chromosome–length genome assembly of a double haploid “Bartlett” pear (Pyrus communis L.)
    GigaScience, 2019
    Co-Authors: Yves Van de peer, Gareth Linsmith, Stephane Rombauts, Sara Montanari, Jeanmarc Celton, Philippe Guerif, Chang Liu, Rolf Lohaus, Cecilia Deng, Jason Zurn
    Abstract:

    Background: We report an improved assembly and scaffolding of the European pear (Pyrus communis L.) genome (referred to as BartlettDHv2.0), obtained using a combination of Pacific Biosciences RSII long-read sequencing, Bionano optical mapping, chromatin interaction capture (Hi-C), and genetic mapping. The sample selected for sequencing is a double haploid derived from the same "Bartlett" reference pear that was previously sequenced. Sequencing of di-haploid plants makes assembly more tractable in highly heterozygous species such as P. communis. Findings: A total of 496.9 Mb corresponding to 97% of the estimated genome size were assembled into 494 scaffolds. Hi-C data and a high-density genetic map allowed us to anchor and orient 87% of the sequence on the 17 pear chromosomes. Approximately 50% (247 Mb) of the genome consists of repetitive sequences. Gene annotation confirmed the presence of 37,445 protein-coding genes, which is 13% fewer than previously predicted. Conclusions: We showed that the use of a doubled-haploid plant is an effective solution to the problems presented by high levels of heterozygosity and duplication for the generation of high-quality genome assemblies. We present a high-quality chromosome-scale assembly of the European pear Pyrus communis and demostrate its high degree of synteny with the genomes of Malus x Domestica and Pyrus x bretschneideri.

  • pseudo chromosome length genome assembly of a double haploid bartlett pear Pyrus communis l
    bioRxiv, 2019
    Co-Authors: Gareth Linsmith, Stephane Rombauts, Sara Montanari, Cecilia H Deng, Jeanmarc Celton, Philippe Guerif, Chang Liu, Rolf Lohaus, Jason D Zurn, Alessandro Cestaro
    Abstract:

    We report an improved assembly and scaffolding of the European pear (Pyrus communis L.) genome (referred to as BartlettDHv2.0), obtained using a combination of Pacific Biosciences RSII Long read sequencing (PacBio), Bionano optical mapping, chromatin interaction capture (Hi-C), and genetic mapping. A total of 496.9 million bases (Mb) corresponding to 97% of the estimated genome size were assembled into 494 scaffolds. Hi-C data and a high-density genetic map allowed us to anchor and orient 87% of the sequence on the 17 chromosomes of the pear genome. About 50% (247 Mb) of the genome consists of repetitive sequences. Comparison with previous assemblies of Pyrus communis and Pyrus x bretschneideri confirmed the presence of 37,445 protein-coding genes, which is 13% fewer than previously predicted.

  • Pyrus communis chromosome scale assembly
    bioRxiv, 2019
    Co-Authors: Gareth Linsmith, Stephane Rombauts, Sara Montanari, Cecilia H Deng, Jeanmarc Celton, Philippe Guerif, Chang Liu, Rolf Lohaus, Jason D Zurn, Alessandro Cestaro
    Abstract:

    We report an improved assembly and scaffolding of the European pear (Pyrus communis L.) genome (referred to as BartlettDHv2.0), obtained using a combination of Pacific Biosciences RSII Long read sequencing (PacBio), Bionano optical mapping, chromatin interaction capture (Hi-C), and genetic mapping. A total of 496.9 million bases (Mb) corresponding to 97% of the estimated genome size were assembled into 494 scaffolds. Hi-C data and a high-density genetic map allowed us to anchor and orient 87% of the sequence on the 17 chromosomes of the pear genome. About 50% (247 Mb) of the genome consists of repetitive sequences. Comparison with previous assemblies of Pyrus communis and Pyrus x bretschneideri confirmed the presence of 37,445 protein-coding genes, which is 13% fewer than previously predicted.

Sara Montanari - One of the best experts on this subject based on the ideXlab platform.

  • pseudo chromosome length genome assembly of a double haploid bartlett pear Pyrus communis l
    GigaScience, 2019
    Co-Authors: Gareth Linsmith, Stephane Rombauts, Sara Montanari, Cecilia H Deng, Jeanmarc Celton, Philippe Guerif, Chang Liu, Rolf Lohaus, Jason D Zurn, Alessandro Cestaro
    Abstract:

    Background We report an improved assembly and scaffolding of the European pear (Pyrus communis L.) genome (referred to as BartlettDHv2.0), obtained using a combination of Pacific Biosciences RSII long-read sequencing, Bionano optical mapping, chromatin interaction capture (Hi-C), and genetic mapping. The sample selected for sequencing is a double haploid derived from the same "Bartlett" reference pear that was previously sequenced. Sequencing of di-haploid plants makes assembly more tractable in highly heterozygous species such as P. communis. Findings A total of 496.9 Mb corresponding to 97% of the estimated genome size were assembled into 494 scaffolds. Hi-C data and a high-density genetic map allowed us to anchor and orient 87% of the sequence on the 17 pear chromosomes. Approximately 50% (247 Mb) of the genome consists of repetitive sequences. Gene annotation confirmed the presence of 37,445 protein-coding genes, which is 13% fewer than previously predicted. Conclusions We showed that the use of a doubled-haploid plant is an effective solution to the problems presented by high levels of heterozygosity and duplication for the generation of high-quality genome assemblies. We present a high-quality chromosome-scale assembly of the European pear Pyrus communis and demostrate its high degree of synteny with the genomes of Malus x Domestica and Pyrus x bretschneideri.

  • Pseudo-chromosome–length genome assembly of a double haploid “Bartlett” pear (Pyrus communis L.)
    GigaScience, 2019
    Co-Authors: Yves Van de peer, Gareth Linsmith, Stephane Rombauts, Sara Montanari, Jeanmarc Celton, Philippe Guerif, Chang Liu, Rolf Lohaus, Cecilia Deng, Jason Zurn
    Abstract:

    Background: We report an improved assembly and scaffolding of the European pear (Pyrus communis L.) genome (referred to as BartlettDHv2.0), obtained using a combination of Pacific Biosciences RSII long-read sequencing, Bionano optical mapping, chromatin interaction capture (Hi-C), and genetic mapping. The sample selected for sequencing is a double haploid derived from the same "Bartlett" reference pear that was previously sequenced. Sequencing of di-haploid plants makes assembly more tractable in highly heterozygous species such as P. communis. Findings: A total of 496.9 Mb corresponding to 97% of the estimated genome size were assembled into 494 scaffolds. Hi-C data and a high-density genetic map allowed us to anchor and orient 87% of the sequence on the 17 pear chromosomes. Approximately 50% (247 Mb) of the genome consists of repetitive sequences. Gene annotation confirmed the presence of 37,445 protein-coding genes, which is 13% fewer than previously predicted. Conclusions: We showed that the use of a doubled-haploid plant is an effective solution to the problems presented by high levels of heterozygosity and duplication for the generation of high-quality genome assemblies. We present a high-quality chromosome-scale assembly of the European pear Pyrus communis and demostrate its high degree of synteny with the genomes of Malus x Domestica and Pyrus x bretschneideri.

  • pseudo chromosome length genome assembly of a double haploid bartlett pear Pyrus communis l
    bioRxiv, 2019
    Co-Authors: Gareth Linsmith, Stephane Rombauts, Sara Montanari, Cecilia H Deng, Jeanmarc Celton, Philippe Guerif, Chang Liu, Rolf Lohaus, Jason D Zurn, Alessandro Cestaro
    Abstract:

    We report an improved assembly and scaffolding of the European pear (Pyrus communis L.) genome (referred to as BartlettDHv2.0), obtained using a combination of Pacific Biosciences RSII Long read sequencing (PacBio), Bionano optical mapping, chromatin interaction capture (Hi-C), and genetic mapping. A total of 496.9 million bases (Mb) corresponding to 97% of the estimated genome size were assembled into 494 scaffolds. Hi-C data and a high-density genetic map allowed us to anchor and orient 87% of the sequence on the 17 chromosomes of the pear genome. About 50% (247 Mb) of the genome consists of repetitive sequences. Comparison with previous assemblies of Pyrus communis and Pyrus x bretschneideri confirmed the presence of 37,445 protein-coding genes, which is 13% fewer than previously predicted.

  • Pyrus communis chromosome scale assembly
    bioRxiv, 2019
    Co-Authors: Gareth Linsmith, Stephane Rombauts, Sara Montanari, Cecilia H Deng, Jeanmarc Celton, Philippe Guerif, Chang Liu, Rolf Lohaus, Jason D Zurn, Alessandro Cestaro
    Abstract:

    We report an improved assembly and scaffolding of the European pear (Pyrus communis L.) genome (referred to as BartlettDHv2.0), obtained using a combination of Pacific Biosciences RSII Long read sequencing (PacBio), Bionano optical mapping, chromatin interaction capture (Hi-C), and genetic mapping. A total of 496.9 million bases (Mb) corresponding to 97% of the estimated genome size were assembled into 494 scaffolds. Hi-C data and a high-density genetic map allowed us to anchor and orient 87% of the sequence on the 17 chromosomes of the pear genome. About 50% (247 Mb) of the genome consists of repetitive sequences. Comparison with previous assemblies of Pyrus communis and Pyrus x bretschneideri confirmed the presence of 37,445 protein-coding genes, which is 13% fewer than previously predicted.