Python Script

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 7803 Experts worldwide ranked by ideXlab platform

Hugues Aschard - One of the best experts on this subject based on the ideXlab platform.

  • deriving stratified effects from joint models investigating gene environment interactions
    BMC Bioinformatics, 2020
    Co-Authors: Vincent Laville, Timothy Majarian, Amy R Bentley, Yun J Sung, Alisa K Manning, Hugues Aschard, Mary F Feitosa, Paul S De Vries
    Abstract:

    Models including an interaction term and performing a joint test of SNP and/or interaction effect are often used to discover Gene-Environment (GxE) interactions. When the environmental exposure is a binary variable, analyses from exposure-stratified models which consist of estimating genetic effect in unexposed and exposed individuals separately can be of interest. In large-scale consortia focusing on GxE interactions in which only the joint test has been performed, it may be challenging to get summary statistics from both exposure-stratified and marginal (i.e not accounting for interaction) models. In this work, we developed a simple framework to estimate summary statistics in each stratum of a binary exposure and in the marginal model using summary statistics from the “joint” model. We performed simulation studies to assess our estimators’ accuracy and examined potential sources of bias, such as correlation between genotype and exposure and differing phenotypic variances within exposure strata. Results from these simulations highlight the high theoretical accuracy of our estimators and yield insights into the impact of potential sources of bias. We then applied our methods to real data and demonstrate our estimators’ retained accuracy after filtering SNPs by sample size to mitigate potential bias. These analyses demonstrated the accuracy of our method in estimating both stratified and marginal summary statistics from a joint model of gene-environment interaction. In addition to facilitating the interpretation of GxE screenings, this work could be used to guide further functional analyses. We provide a user-friendly Python Script to apply this strategy to real datasets. The Python Script and documentation are available at https://gitlab.pasteur.fr/statistical-genetics/j2s.

  • deriving stratified effects from joint models investigating gene environment interactions
    bioRxiv, 2019
    Co-Authors: Vincent Laville, Timothy Majarian, Amy R Bentley, Yun J Sung, Alisa K Manning, Mary F Feitosa, Paul S De Vries, Hugues Aschard
    Abstract:

    Abstract Background Models including an interaction term and performing a joint test of SNP and/or interaction effect are often used to discover Gene-Environment (GxE) interactions. When the environmental exposure is a binary variable, analyses from exposure-stratified models which consist in estimating genetic effect in unexposed and exposed individuals separately can be of interest. In large-scale consortia focusing on GxE interactions in which only the joint test has been performed, it may be challenging to get summary statistics from both exposure-stratified and marginal (i.e not accounting for interaction) models. Results In this work, we developed a simple framework to estimate summary statistics in each stratum of a binary exposure and in the marginal model using summary statistics from the “joint” model. We performed simulation studies to assess our estimators’ accuracy and examined potential sources of bias, such as correlation between genotype and exposure and differing phenotypic variances within exposure strata. Results from these simulations highlight the high theoretical accuracy of our estimators and yield insights into the impact of potential sources of bias. We then applied our methods to real data and demonstrate our estimators’ retained accuracy after filtering SNPs by sample size to mitigate potential bias. Conclusions These analyses demonstrated the accuracy of our method in estimating both stratified and marginal summary statistics from a joint model of gene-environment interaction. In addition to facilitating the interpretation of GxE screenings, this work could be used to guide further functional analyses. We provide a user-friendly Python Script to apply this strategy to real datasets. The Python Script and documentation are available at https://gitlab.pasteur.fr/statistical-genetics/J2S.

Alisa K Manning - One of the best experts on this subject based on the ideXlab platform.

  • deriving stratified effects from joint models investigating gene environment interactions
    BMC Bioinformatics, 2020
    Co-Authors: Vincent Laville, Timothy Majarian, Amy R Bentley, Yun J Sung, Alisa K Manning, Hugues Aschard, Mary F Feitosa, Paul S De Vries
    Abstract:

    Models including an interaction term and performing a joint test of SNP and/or interaction effect are often used to discover Gene-Environment (GxE) interactions. When the environmental exposure is a binary variable, analyses from exposure-stratified models which consist of estimating genetic effect in unexposed and exposed individuals separately can be of interest. In large-scale consortia focusing on GxE interactions in which only the joint test has been performed, it may be challenging to get summary statistics from both exposure-stratified and marginal (i.e not accounting for interaction) models. In this work, we developed a simple framework to estimate summary statistics in each stratum of a binary exposure and in the marginal model using summary statistics from the “joint” model. We performed simulation studies to assess our estimators’ accuracy and examined potential sources of bias, such as correlation between genotype and exposure and differing phenotypic variances within exposure strata. Results from these simulations highlight the high theoretical accuracy of our estimators and yield insights into the impact of potential sources of bias. We then applied our methods to real data and demonstrate our estimators’ retained accuracy after filtering SNPs by sample size to mitigate potential bias. These analyses demonstrated the accuracy of our method in estimating both stratified and marginal summary statistics from a joint model of gene-environment interaction. In addition to facilitating the interpretation of GxE screenings, this work could be used to guide further functional analyses. We provide a user-friendly Python Script to apply this strategy to real datasets. The Python Script and documentation are available at https://gitlab.pasteur.fr/statistical-genetics/j2s.

  • deriving stratified effects from joint models investigating gene environment interactions
    bioRxiv, 2019
    Co-Authors: Vincent Laville, Timothy Majarian, Amy R Bentley, Yun J Sung, Alisa K Manning, Mary F Feitosa, Paul S De Vries, Hugues Aschard
    Abstract:

    Abstract Background Models including an interaction term and performing a joint test of SNP and/or interaction effect are often used to discover Gene-Environment (GxE) interactions. When the environmental exposure is a binary variable, analyses from exposure-stratified models which consist in estimating genetic effect in unexposed and exposed individuals separately can be of interest. In large-scale consortia focusing on GxE interactions in which only the joint test has been performed, it may be challenging to get summary statistics from both exposure-stratified and marginal (i.e not accounting for interaction) models. Results In this work, we developed a simple framework to estimate summary statistics in each stratum of a binary exposure and in the marginal model using summary statistics from the “joint” model. We performed simulation studies to assess our estimators’ accuracy and examined potential sources of bias, such as correlation between genotype and exposure and differing phenotypic variances within exposure strata. Results from these simulations highlight the high theoretical accuracy of our estimators and yield insights into the impact of potential sources of bias. We then applied our methods to real data and demonstrate our estimators’ retained accuracy after filtering SNPs by sample size to mitigate potential bias. Conclusions These analyses demonstrated the accuracy of our method in estimating both stratified and marginal summary statistics from a joint model of gene-environment interaction. In addition to facilitating the interpretation of GxE screenings, this work could be used to guide further functional analyses. We provide a user-friendly Python Script to apply this strategy to real datasets. The Python Script and documentation are available at https://gitlab.pasteur.fr/statistical-genetics/J2S.

Vincent Laville - One of the best experts on this subject based on the ideXlab platform.

  • deriving stratified effects from joint models investigating gene environment interactions
    BMC Bioinformatics, 2020
    Co-Authors: Vincent Laville, Timothy Majarian, Amy R Bentley, Yun J Sung, Alisa K Manning, Hugues Aschard, Mary F Feitosa, Paul S De Vries
    Abstract:

    Models including an interaction term and performing a joint test of SNP and/or interaction effect are often used to discover Gene-Environment (GxE) interactions. When the environmental exposure is a binary variable, analyses from exposure-stratified models which consist of estimating genetic effect in unexposed and exposed individuals separately can be of interest. In large-scale consortia focusing on GxE interactions in which only the joint test has been performed, it may be challenging to get summary statistics from both exposure-stratified and marginal (i.e not accounting for interaction) models. In this work, we developed a simple framework to estimate summary statistics in each stratum of a binary exposure and in the marginal model using summary statistics from the “joint” model. We performed simulation studies to assess our estimators’ accuracy and examined potential sources of bias, such as correlation between genotype and exposure and differing phenotypic variances within exposure strata. Results from these simulations highlight the high theoretical accuracy of our estimators and yield insights into the impact of potential sources of bias. We then applied our methods to real data and demonstrate our estimators’ retained accuracy after filtering SNPs by sample size to mitigate potential bias. These analyses demonstrated the accuracy of our method in estimating both stratified and marginal summary statistics from a joint model of gene-environment interaction. In addition to facilitating the interpretation of GxE screenings, this work could be used to guide further functional analyses. We provide a user-friendly Python Script to apply this strategy to real datasets. The Python Script and documentation are available at https://gitlab.pasteur.fr/statistical-genetics/j2s.

  • deriving stratified effects from joint models investigating gene environment interactions
    bioRxiv, 2019
    Co-Authors: Vincent Laville, Timothy Majarian, Amy R Bentley, Yun J Sung, Alisa K Manning, Mary F Feitosa, Paul S De Vries, Hugues Aschard
    Abstract:

    Abstract Background Models including an interaction term and performing a joint test of SNP and/or interaction effect are often used to discover Gene-Environment (GxE) interactions. When the environmental exposure is a binary variable, analyses from exposure-stratified models which consist in estimating genetic effect in unexposed and exposed individuals separately can be of interest. In large-scale consortia focusing on GxE interactions in which only the joint test has been performed, it may be challenging to get summary statistics from both exposure-stratified and marginal (i.e not accounting for interaction) models. Results In this work, we developed a simple framework to estimate summary statistics in each stratum of a binary exposure and in the marginal model using summary statistics from the “joint” model. We performed simulation studies to assess our estimators’ accuracy and examined potential sources of bias, such as correlation between genotype and exposure and differing phenotypic variances within exposure strata. Results from these simulations highlight the high theoretical accuracy of our estimators and yield insights into the impact of potential sources of bias. We then applied our methods to real data and demonstrate our estimators’ retained accuracy after filtering SNPs by sample size to mitigate potential bias. Conclusions These analyses demonstrated the accuracy of our method in estimating both stratified and marginal summary statistics from a joint model of gene-environment interaction. In addition to facilitating the interpretation of GxE screenings, this work could be used to guide further functional analyses. We provide a user-friendly Python Script to apply this strategy to real datasets. The Python Script and documentation are available at https://gitlab.pasteur.fr/statistical-genetics/J2S.

Amy R Bentley - One of the best experts on this subject based on the ideXlab platform.

  • deriving stratified effects from joint models investigating gene environment interactions
    BMC Bioinformatics, 2020
    Co-Authors: Vincent Laville, Timothy Majarian, Amy R Bentley, Yun J Sung, Alisa K Manning, Hugues Aschard, Mary F Feitosa, Paul S De Vries
    Abstract:

    Models including an interaction term and performing a joint test of SNP and/or interaction effect are often used to discover Gene-Environment (GxE) interactions. When the environmental exposure is a binary variable, analyses from exposure-stratified models which consist of estimating genetic effect in unexposed and exposed individuals separately can be of interest. In large-scale consortia focusing on GxE interactions in which only the joint test has been performed, it may be challenging to get summary statistics from both exposure-stratified and marginal (i.e not accounting for interaction) models. In this work, we developed a simple framework to estimate summary statistics in each stratum of a binary exposure and in the marginal model using summary statistics from the “joint” model. We performed simulation studies to assess our estimators’ accuracy and examined potential sources of bias, such as correlation between genotype and exposure and differing phenotypic variances within exposure strata. Results from these simulations highlight the high theoretical accuracy of our estimators and yield insights into the impact of potential sources of bias. We then applied our methods to real data and demonstrate our estimators’ retained accuracy after filtering SNPs by sample size to mitigate potential bias. These analyses demonstrated the accuracy of our method in estimating both stratified and marginal summary statistics from a joint model of gene-environment interaction. In addition to facilitating the interpretation of GxE screenings, this work could be used to guide further functional analyses. We provide a user-friendly Python Script to apply this strategy to real datasets. The Python Script and documentation are available at https://gitlab.pasteur.fr/statistical-genetics/j2s.

  • deriving stratified effects from joint models investigating gene environment interactions
    bioRxiv, 2019
    Co-Authors: Vincent Laville, Timothy Majarian, Amy R Bentley, Yun J Sung, Alisa K Manning, Mary F Feitosa, Paul S De Vries, Hugues Aschard
    Abstract:

    Abstract Background Models including an interaction term and performing a joint test of SNP and/or interaction effect are often used to discover Gene-Environment (GxE) interactions. When the environmental exposure is a binary variable, analyses from exposure-stratified models which consist in estimating genetic effect in unexposed and exposed individuals separately can be of interest. In large-scale consortia focusing on GxE interactions in which only the joint test has been performed, it may be challenging to get summary statistics from both exposure-stratified and marginal (i.e not accounting for interaction) models. Results In this work, we developed a simple framework to estimate summary statistics in each stratum of a binary exposure and in the marginal model using summary statistics from the “joint” model. We performed simulation studies to assess our estimators’ accuracy and examined potential sources of bias, such as correlation between genotype and exposure and differing phenotypic variances within exposure strata. Results from these simulations highlight the high theoretical accuracy of our estimators and yield insights into the impact of potential sources of bias. We then applied our methods to real data and demonstrate our estimators’ retained accuracy after filtering SNPs by sample size to mitigate potential bias. Conclusions These analyses demonstrated the accuracy of our method in estimating both stratified and marginal summary statistics from a joint model of gene-environment interaction. In addition to facilitating the interpretation of GxE screenings, this work could be used to guide further functional analyses. We provide a user-friendly Python Script to apply this strategy to real datasets. The Python Script and documentation are available at https://gitlab.pasteur.fr/statistical-genetics/J2S.

Paul S De Vries - One of the best experts on this subject based on the ideXlab platform.

  • deriving stratified effects from joint models investigating gene environment interactions
    BMC Bioinformatics, 2020
    Co-Authors: Vincent Laville, Timothy Majarian, Amy R Bentley, Yun J Sung, Alisa K Manning, Hugues Aschard, Mary F Feitosa, Paul S De Vries
    Abstract:

    Models including an interaction term and performing a joint test of SNP and/or interaction effect are often used to discover Gene-Environment (GxE) interactions. When the environmental exposure is a binary variable, analyses from exposure-stratified models which consist of estimating genetic effect in unexposed and exposed individuals separately can be of interest. In large-scale consortia focusing on GxE interactions in which only the joint test has been performed, it may be challenging to get summary statistics from both exposure-stratified and marginal (i.e not accounting for interaction) models. In this work, we developed a simple framework to estimate summary statistics in each stratum of a binary exposure and in the marginal model using summary statistics from the “joint” model. We performed simulation studies to assess our estimators’ accuracy and examined potential sources of bias, such as correlation between genotype and exposure and differing phenotypic variances within exposure strata. Results from these simulations highlight the high theoretical accuracy of our estimators and yield insights into the impact of potential sources of bias. We then applied our methods to real data and demonstrate our estimators’ retained accuracy after filtering SNPs by sample size to mitigate potential bias. These analyses demonstrated the accuracy of our method in estimating both stratified and marginal summary statistics from a joint model of gene-environment interaction. In addition to facilitating the interpretation of GxE screenings, this work could be used to guide further functional analyses. We provide a user-friendly Python Script to apply this strategy to real datasets. The Python Script and documentation are available at https://gitlab.pasteur.fr/statistical-genetics/j2s.

  • deriving stratified effects from joint models investigating gene environment interactions
    bioRxiv, 2019
    Co-Authors: Vincent Laville, Timothy Majarian, Amy R Bentley, Yun J Sung, Alisa K Manning, Mary F Feitosa, Paul S De Vries, Hugues Aschard
    Abstract:

    Abstract Background Models including an interaction term and performing a joint test of SNP and/or interaction effect are often used to discover Gene-Environment (GxE) interactions. When the environmental exposure is a binary variable, analyses from exposure-stratified models which consist in estimating genetic effect in unexposed and exposed individuals separately can be of interest. In large-scale consortia focusing on GxE interactions in which only the joint test has been performed, it may be challenging to get summary statistics from both exposure-stratified and marginal (i.e not accounting for interaction) models. Results In this work, we developed a simple framework to estimate summary statistics in each stratum of a binary exposure and in the marginal model using summary statistics from the “joint” model. We performed simulation studies to assess our estimators’ accuracy and examined potential sources of bias, such as correlation between genotype and exposure and differing phenotypic variances within exposure strata. Results from these simulations highlight the high theoretical accuracy of our estimators and yield insights into the impact of potential sources of bias. We then applied our methods to real data and demonstrate our estimators’ retained accuracy after filtering SNPs by sample size to mitigate potential bias. Conclusions These analyses demonstrated the accuracy of our method in estimating both stratified and marginal summary statistics from a joint model of gene-environment interaction. In addition to facilitating the interpretation of GxE screenings, this work could be used to guide further functional analyses. We provide a user-friendly Python Script to apply this strategy to real datasets. The Python Script and documentation are available at https://gitlab.pasteur.fr/statistical-genetics/J2S.