Quasistatic Test

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 1299 Experts worldwide ranked by ideXlab platform

Paulo G Coelho - One of the best experts on this subject based on the ideXlab platform.

  • Research Article Nanomechanical Characterization of Canine Femur Bone for Strain Rate Sensitivity in the Quasistatic Range
    2016
    Co-Authors: Nick Tovar, Paulo G Coelho
    Abstract:

    Copyright © 2012 Kun-Lin Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. As a strain rate-dependent material, bone has a different mechanical response to various loads. Our aim was to evaluate the effect of water and different loading/unloading rates on the nanomechanical properties of canine femur cortical bone. Six cross-sections were cut from the diaphysis of six dog femurs and were nanoindented in their cortical area. Both dry and wet conditions were taken into account for three Quasistatic trapezoid profiles with a maximum force of 2000 μN (holding time = 30 s) at loading/unloading rates of 10, 100, and 1000 μN/s, respectively. For each specimen, 254±9 (mean ± SD) indentations were performed under different loading conditions. Significant differences were found for the elastic modulus and hardness between wet and dry conditions (P < 0.001). No influence of the loading/unloading rates was observed between groups except for the elastic modulus measured at 1000 μN/s rate under dry conditions (P < 0.001) and for the hardness measured at a rate of 10 μN/s under wet conditions (P < 0.001). Therefore, for a Quasistatic Test with peak load of 2000 μN held for 30 s, it is recommended to nanoindent under we

  • nanomechanical characterization of canine femur bone for strain rate sensitivity in the Quasistatic range under dry versus wet conditions
    International Journal of Biomaterials, 2012
    Co-Authors: Kunlin Lee, Marta Baldassarri, Nikhil Gupta, Dinesh Pinisetty, Malvin N Janal, Nick Tovar, Paulo G Coelho
    Abstract:

    As a strain rate-dependent material, bone has a different mechanical response to various loads. Our aim was to evaluate the effect of water and different loading/unloading rates on the nanomechanical properties of canine femur cortical bone. Six cross-sections were cut from the diaphysis of six dog femurs and were nanoindented in their cortical area. Both dry and wet conditions were taken into account for three Quasistatic trapezoid profiles with a maximum force of 2000 μN (holding time = 30 s) at loading/unloading rates of 10, 100, and 1000 μN/s, respectively. For each specimen, (mean ± SD) indentations were performed under different loading conditions. Significant differences were found for the elastic modulus and hardness between wet and dry conditions (). No influence of the loading/unloading rates was observed between groups except for the elastic modulus measured at 1000 μN/s rate under dry conditions () and for the hardness measured at a rate of 10 μN/s under wet conditions (). Therefore, for a Quasistatic Test with peak load of 2000 μN held for 30 s, it is recommended to nanoindent under wet conditions at a loading/unloading rate of 100–1000 μN/s, so the reduced creep effect allows for a more accurate computation of mechanical properties.

Nick Tovar - One of the best experts on this subject based on the ideXlab platform.

  • Research Article Nanomechanical Characterization of Canine Femur Bone for Strain Rate Sensitivity in the Quasistatic Range
    2016
    Co-Authors: Nick Tovar, Paulo G Coelho
    Abstract:

    Copyright © 2012 Kun-Lin Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. As a strain rate-dependent material, bone has a different mechanical response to various loads. Our aim was to evaluate the effect of water and different loading/unloading rates on the nanomechanical properties of canine femur cortical bone. Six cross-sections were cut from the diaphysis of six dog femurs and were nanoindented in their cortical area. Both dry and wet conditions were taken into account for three Quasistatic trapezoid profiles with a maximum force of 2000 μN (holding time = 30 s) at loading/unloading rates of 10, 100, and 1000 μN/s, respectively. For each specimen, 254±9 (mean ± SD) indentations were performed under different loading conditions. Significant differences were found for the elastic modulus and hardness between wet and dry conditions (P < 0.001). No influence of the loading/unloading rates was observed between groups except for the elastic modulus measured at 1000 μN/s rate under dry conditions (P < 0.001) and for the hardness measured at a rate of 10 μN/s under wet conditions (P < 0.001). Therefore, for a Quasistatic Test with peak load of 2000 μN held for 30 s, it is recommended to nanoindent under we

  • nanomechanical characterization of canine femur bone for strain rate sensitivity in the Quasistatic range under dry versus wet conditions
    International Journal of Biomaterials, 2012
    Co-Authors: Kunlin Lee, Marta Baldassarri, Nikhil Gupta, Dinesh Pinisetty, Malvin N Janal, Nick Tovar, Paulo G Coelho
    Abstract:

    As a strain rate-dependent material, bone has a different mechanical response to various loads. Our aim was to evaluate the effect of water and different loading/unloading rates on the nanomechanical properties of canine femur cortical bone. Six cross-sections were cut from the diaphysis of six dog femurs and were nanoindented in their cortical area. Both dry and wet conditions were taken into account for three Quasistatic trapezoid profiles with a maximum force of 2000 μN (holding time = 30 s) at loading/unloading rates of 10, 100, and 1000 μN/s, respectively. For each specimen, (mean ± SD) indentations were performed under different loading conditions. Significant differences were found for the elastic modulus and hardness between wet and dry conditions (). No influence of the loading/unloading rates was observed between groups except for the elastic modulus measured at 1000 μN/s rate under dry conditions () and for the hardness measured at a rate of 10 μN/s under wet conditions (). Therefore, for a Quasistatic Test with peak load of 2000 μN held for 30 s, it is recommended to nanoindent under wet conditions at a loading/unloading rate of 100–1000 μN/s, so the reduced creep effect allows for a more accurate computation of mechanical properties.

Kunlin Lee - One of the best experts on this subject based on the ideXlab platform.

  • nanomechanical characterization of canine femur bone for strain rate sensitivity in the Quasistatic range under dry versus wet conditions
    International Journal of Biomaterials, 2012
    Co-Authors: Kunlin Lee, Marta Baldassarri, Nikhil Gupta, Dinesh Pinisetty, Malvin N Janal, Nick Tovar, Paulo G Coelho
    Abstract:

    As a strain rate-dependent material, bone has a different mechanical response to various loads. Our aim was to evaluate the effect of water and different loading/unloading rates on the nanomechanical properties of canine femur cortical bone. Six cross-sections were cut from the diaphysis of six dog femurs and were nanoindented in their cortical area. Both dry and wet conditions were taken into account for three Quasistatic trapezoid profiles with a maximum force of 2000 μN (holding time = 30 s) at loading/unloading rates of 10, 100, and 1000 μN/s, respectively. For each specimen, (mean ± SD) indentations were performed under different loading conditions. Significant differences were found for the elastic modulus and hardness between wet and dry conditions (). No influence of the loading/unloading rates was observed between groups except for the elastic modulus measured at 1000 μN/s rate under dry conditions () and for the hardness measured at a rate of 10 μN/s under wet conditions (). Therefore, for a Quasistatic Test with peak load of 2000 μN held for 30 s, it is recommended to nanoindent under wet conditions at a loading/unloading rate of 100–1000 μN/s, so the reduced creep effect allows for a more accurate computation of mechanical properties.

Marta Baldassarri - One of the best experts on this subject based on the ideXlab platform.

  • nanomechanical characterization of canine femur bone for strain rate sensitivity in the Quasistatic range under dry versus wet conditions
    International Journal of Biomaterials, 2012
    Co-Authors: Kunlin Lee, Marta Baldassarri, Nikhil Gupta, Dinesh Pinisetty, Malvin N Janal, Nick Tovar, Paulo G Coelho
    Abstract:

    As a strain rate-dependent material, bone has a different mechanical response to various loads. Our aim was to evaluate the effect of water and different loading/unloading rates on the nanomechanical properties of canine femur cortical bone. Six cross-sections were cut from the diaphysis of six dog femurs and were nanoindented in their cortical area. Both dry and wet conditions were taken into account for three Quasistatic trapezoid profiles with a maximum force of 2000 μN (holding time = 30 s) at loading/unloading rates of 10, 100, and 1000 μN/s, respectively. For each specimen, (mean ± SD) indentations were performed under different loading conditions. Significant differences were found for the elastic modulus and hardness between wet and dry conditions (). No influence of the loading/unloading rates was observed between groups except for the elastic modulus measured at 1000 μN/s rate under dry conditions () and for the hardness measured at a rate of 10 μN/s under wet conditions (). Therefore, for a Quasistatic Test with peak load of 2000 μN held for 30 s, it is recommended to nanoindent under wet conditions at a loading/unloading rate of 100–1000 μN/s, so the reduced creep effect allows for a more accurate computation of mechanical properties.

Malvin N Janal - One of the best experts on this subject based on the ideXlab platform.

  • nanomechanical characterization of canine femur bone for strain rate sensitivity in the Quasistatic range under dry versus wet conditions
    International Journal of Biomaterials, 2012
    Co-Authors: Kunlin Lee, Marta Baldassarri, Nikhil Gupta, Dinesh Pinisetty, Malvin N Janal, Nick Tovar, Paulo G Coelho
    Abstract:

    As a strain rate-dependent material, bone has a different mechanical response to various loads. Our aim was to evaluate the effect of water and different loading/unloading rates on the nanomechanical properties of canine femur cortical bone. Six cross-sections were cut from the diaphysis of six dog femurs and were nanoindented in their cortical area. Both dry and wet conditions were taken into account for three Quasistatic trapezoid profiles with a maximum force of 2000 μN (holding time = 30 s) at loading/unloading rates of 10, 100, and 1000 μN/s, respectively. For each specimen, (mean ± SD) indentations were performed under different loading conditions. Significant differences were found for the elastic modulus and hardness between wet and dry conditions (). No influence of the loading/unloading rates was observed between groups except for the elastic modulus measured at 1000 μN/s rate under dry conditions () and for the hardness measured at a rate of 10 μN/s under wet conditions (). Therefore, for a Quasistatic Test with peak load of 2000 μN held for 30 s, it is recommended to nanoindent under wet conditions at a loading/unloading rate of 100–1000 μN/s, so the reduced creep effect allows for a more accurate computation of mechanical properties.