Raphe Nuclei

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 237 Experts worldwide ranked by ideXlab platform

Victoria Arango - One of the best experts on this subject based on the ideXlab platform.

  • neuronal tryptophan hydroxylase mrna expression in the human dorsal and median Raphe Nuclei major depression and suicide
    Neuropsychopharmacology, 2006
    Co-Authors: Helene Bachmizrachi, Mark D Underwood, Suham Kassir, John J Mann, Mihran J Bakalian, Etienne Sibille, Hadassah Tamir, Victoria Arango
    Abstract:

    Neuronal Tryptophan Hydroxylase mRNA Expression in the Human Dorsal and Median Raphe Nuclei: Major Depression and Suicide

  • immobilization stress elevates tryptophan hydroxylase mrna and protein in the rat Raphe Nuclei
    Biological Psychiatry, 2004
    Co-Authors: Firas Chamas, Mark D Underwood, Victoria Arango, Lidia I Serova, Suham Kassir, John J Mann, Esther L Sabban
    Abstract:

    Abstract Background Stress triggers adaptive and maladaptive changes in the central nervous system, including activation of the hypothalamic–pituitary–adrenal axis, and can trigger mood disorders and posttraumatic stress disorder. We examined the effect of immobilization stress (IMO) on gene expression of tryptophan hydroxylase (TPH), the rate-limiting enzyme in serotonin biosynthesis, and the role of cortisol in that response. Methods Regular and adrenalectomized Sprague-Dawley rats were exposed to various repetitions of IMO. Tryptophan hydroxylase messenger riboNucleic acid (mRNA) was determined by competitive reverse transcriptase polymerase chain reaction, and TPH protein was examined by immunoblot and immunocytochemistry. Results Elevation of TPH mRNA by IMO was tissue-specific and dose-dependent. A single IMO elicited a threefold rise in TPH mRNA in median Raphe nucleus (MRN), but repeated (3×) IMOs were needed for similar response in dorsal Raphe nucleus (DRN). Repeated daily IMO, up to 7 days, triggered a robust induction (6–10-fold) in TPH mRNA, accompanied by corresponding rise in TPH protein levels in Raphe Nuclei but not in the pineal gland. The rise in TPH immunoreactivity was widespread throughout the DRN and MRN. Bilateral adrenalectomy did not prevent the IMO-triggered increase in TPH immunoreactive protein in the Raphe Nuclei. Conclusions This study reveals adrenal glucocorticoid–independent induction of TPH gene expression in Raphe Nuclei in response to immobilization stress.

Mark D Underwood - One of the best experts on this subject based on the ideXlab platform.

  • neuronal tryptophan hydroxylase mrna expression in the human dorsal and median Raphe Nuclei major depression and suicide
    Neuropsychopharmacology, 2006
    Co-Authors: Helene Bachmizrachi, Mark D Underwood, Suham Kassir, John J Mann, Mihran J Bakalian, Etienne Sibille, Hadassah Tamir, Victoria Arango
    Abstract:

    Neuronal Tryptophan Hydroxylase mRNA Expression in the Human Dorsal and Median Raphe Nuclei: Major Depression and Suicide

  • immobilization stress elevates tryptophan hydroxylase mrna and protein in the rat Raphe Nuclei
    Biological Psychiatry, 2004
    Co-Authors: Firas Chamas, Mark D Underwood, Victoria Arango, Lidia I Serova, Suham Kassir, John J Mann, Esther L Sabban
    Abstract:

    Abstract Background Stress triggers adaptive and maladaptive changes in the central nervous system, including activation of the hypothalamic–pituitary–adrenal axis, and can trigger mood disorders and posttraumatic stress disorder. We examined the effect of immobilization stress (IMO) on gene expression of tryptophan hydroxylase (TPH), the rate-limiting enzyme in serotonin biosynthesis, and the role of cortisol in that response. Methods Regular and adrenalectomized Sprague-Dawley rats were exposed to various repetitions of IMO. Tryptophan hydroxylase messenger riboNucleic acid (mRNA) was determined by competitive reverse transcriptase polymerase chain reaction, and TPH protein was examined by immunoblot and immunocytochemistry. Results Elevation of TPH mRNA by IMO was tissue-specific and dose-dependent. A single IMO elicited a threefold rise in TPH mRNA in median Raphe nucleus (MRN), but repeated (3×) IMOs were needed for similar response in dorsal Raphe nucleus (DRN). Repeated daily IMO, up to 7 days, triggered a robust induction (6–10-fold) in TPH mRNA, accompanied by corresponding rise in TPH protein levels in Raphe Nuclei but not in the pineal gland. The rise in TPH immunoreactivity was widespread throughout the DRN and MRN. Bilateral adrenalectomy did not prevent the IMO-triggered increase in TPH immunoreactive protein in the Raphe Nuclei. Conclusions This study reveals adrenal glucocorticoid–independent induction of TPH gene expression in Raphe Nuclei in response to immobilization stress.

Suham Kassir - One of the best experts on this subject based on the ideXlab platform.

  • neuronal tryptophan hydroxylase mrna expression in the human dorsal and median Raphe Nuclei major depression and suicide
    Neuropsychopharmacology, 2006
    Co-Authors: Helene Bachmizrachi, Mark D Underwood, Suham Kassir, John J Mann, Mihran J Bakalian, Etienne Sibille, Hadassah Tamir, Victoria Arango
    Abstract:

    Neuronal Tryptophan Hydroxylase mRNA Expression in the Human Dorsal and Median Raphe Nuclei: Major Depression and Suicide

  • immobilization stress elevates tryptophan hydroxylase mrna and protein in the rat Raphe Nuclei
    Biological Psychiatry, 2004
    Co-Authors: Firas Chamas, Mark D Underwood, Victoria Arango, Lidia I Serova, Suham Kassir, John J Mann, Esther L Sabban
    Abstract:

    Abstract Background Stress triggers adaptive and maladaptive changes in the central nervous system, including activation of the hypothalamic–pituitary–adrenal axis, and can trigger mood disorders and posttraumatic stress disorder. We examined the effect of immobilization stress (IMO) on gene expression of tryptophan hydroxylase (TPH), the rate-limiting enzyme in serotonin biosynthesis, and the role of cortisol in that response. Methods Regular and adrenalectomized Sprague-Dawley rats were exposed to various repetitions of IMO. Tryptophan hydroxylase messenger riboNucleic acid (mRNA) was determined by competitive reverse transcriptase polymerase chain reaction, and TPH protein was examined by immunoblot and immunocytochemistry. Results Elevation of TPH mRNA by IMO was tissue-specific and dose-dependent. A single IMO elicited a threefold rise in TPH mRNA in median Raphe nucleus (MRN), but repeated (3×) IMOs were needed for similar response in dorsal Raphe nucleus (DRN). Repeated daily IMO, up to 7 days, triggered a robust induction (6–10-fold) in TPH mRNA, accompanied by corresponding rise in TPH protein levels in Raphe Nuclei but not in the pineal gland. The rise in TPH immunoreactivity was widespread throughout the DRN and MRN. Bilateral adrenalectomy did not prevent the IMO-triggered increase in TPH immunoreactive protein in the Raphe Nuclei. Conclusions This study reveals adrenal glucocorticoid–independent induction of TPH gene expression in Raphe Nuclei in response to immobilization stress.

John J Mann - One of the best experts on this subject based on the ideXlab platform.

  • neuronal tryptophan hydroxylase mrna expression in the human dorsal and median Raphe Nuclei major depression and suicide
    Neuropsychopharmacology, 2006
    Co-Authors: Helene Bachmizrachi, Mark D Underwood, Suham Kassir, John J Mann, Mihran J Bakalian, Etienne Sibille, Hadassah Tamir, Victoria Arango
    Abstract:

    Neuronal Tryptophan Hydroxylase mRNA Expression in the Human Dorsal and Median Raphe Nuclei: Major Depression and Suicide

  • immobilization stress elevates tryptophan hydroxylase mrna and protein in the rat Raphe Nuclei
    Biological Psychiatry, 2004
    Co-Authors: Firas Chamas, Mark D Underwood, Victoria Arango, Lidia I Serova, Suham Kassir, John J Mann, Esther L Sabban
    Abstract:

    Abstract Background Stress triggers adaptive and maladaptive changes in the central nervous system, including activation of the hypothalamic–pituitary–adrenal axis, and can trigger mood disorders and posttraumatic stress disorder. We examined the effect of immobilization stress (IMO) on gene expression of tryptophan hydroxylase (TPH), the rate-limiting enzyme in serotonin biosynthesis, and the role of cortisol in that response. Methods Regular and adrenalectomized Sprague-Dawley rats were exposed to various repetitions of IMO. Tryptophan hydroxylase messenger riboNucleic acid (mRNA) was determined by competitive reverse transcriptase polymerase chain reaction, and TPH protein was examined by immunoblot and immunocytochemistry. Results Elevation of TPH mRNA by IMO was tissue-specific and dose-dependent. A single IMO elicited a threefold rise in TPH mRNA in median Raphe nucleus (MRN), but repeated (3×) IMOs were needed for similar response in dorsal Raphe nucleus (DRN). Repeated daily IMO, up to 7 days, triggered a robust induction (6–10-fold) in TPH mRNA, accompanied by corresponding rise in TPH protein levels in Raphe Nuclei but not in the pineal gland. The rise in TPH immunoreactivity was widespread throughout the DRN and MRN. Bilateral adrenalectomy did not prevent the IMO-triggered increase in TPH immunoreactive protein in the Raphe Nuclei. Conclusions This study reveals adrenal glucocorticoid–independent induction of TPH gene expression in Raphe Nuclei in response to immobilization stress.

Etienne Sibille - One of the best experts on this subject based on the ideXlab platform.