Rate Meter

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 30696 Experts worldwide ranked by ideXlab platform

Vladimir Stankovic - One of the best experts on this subject based on the ideXlab platform.

  • non intrusive load disaggregation solutions for very low Rate smart Meter data
    Applied Energy, 2020
    Co-Authors: Bochao Zhao, Lina Stankovic, Vladimir Stankovic
    Abstract:

    Abstract With the active large-scale roll-out of smart Metering worldwide, details about the type of smart Meter data that will be available for analysis are emerging. Consequently, focus has steadily been shifting from analysis of high-Rate power readings (usually in kHz to MHz) to low-Rate power readings (sampled at 1–60 s) and very low-Rate Meter readings of the order of 15–60 min. This has triggered renewed research into practical non-intrusive load disaggregation of low- to very-low granularity Meter readings to address challenges not addressed by existing disaggregation approaches, namely, indistinct appliance ON/OFF transitions, increased likelihood of overlapping appliance usage within a sample and noise due to unknown appliances. In this paper, focusing on smart Meter readings at hourly resolution, three load disaggregation solutions are proposed based on: (i) optimisation (minimisation of error between aggregate and disaggregated loads), (ii) graph signal processing and (iii) convolutional neural network. These are benchmarked with state-of-the-art approaches, based on factorial hidden Markov model and combinatorial optimisation implemented in the NILMTK toolbox, and discriminative disaggregation sparse coding. The hourly electricity profile data is obtained from real-world active power readings from the REFIT dataset 1 over a period of longer than one year. All proposed disaggregation approaches outperform benchmarking methods for labelled appliances in terms of both energy performance metrics and faster execution time. The proposed approaches succeed in disaggregating, at very low resolutions, a wide range of loads including white goods even when there are unlabelled loads contributing to the Meter readings.

Bochao Zhao - One of the best experts on this subject based on the ideXlab platform.

  • non intrusive load disaggregation solutions for very low Rate smart Meter data
    Applied Energy, 2020
    Co-Authors: Bochao Zhao, Lina Stankovic, Vladimir Stankovic
    Abstract:

    Abstract With the active large-scale roll-out of smart Metering worldwide, details about the type of smart Meter data that will be available for analysis are emerging. Consequently, focus has steadily been shifting from analysis of high-Rate power readings (usually in kHz to MHz) to low-Rate power readings (sampled at 1–60 s) and very low-Rate Meter readings of the order of 15–60 min. This has triggered renewed research into practical non-intrusive load disaggregation of low- to very-low granularity Meter readings to address challenges not addressed by existing disaggregation approaches, namely, indistinct appliance ON/OFF transitions, increased likelihood of overlapping appliance usage within a sample and noise due to unknown appliances. In this paper, focusing on smart Meter readings at hourly resolution, three load disaggregation solutions are proposed based on: (i) optimisation (minimisation of error between aggregate and disaggregated loads), (ii) graph signal processing and (iii) convolutional neural network. These are benchmarked with state-of-the-art approaches, based on factorial hidden Markov model and combinatorial optimisation implemented in the NILMTK toolbox, and discriminative disaggregation sparse coding. The hourly electricity profile data is obtained from real-world active power readings from the REFIT dataset 1 over a period of longer than one year. All proposed disaggregation approaches outperform benchmarking methods for labelled appliances in terms of both energy performance metrics and faster execution time. The proposed approaches succeed in disaggregating, at very low resolutions, a wide range of loads including white goods even when there are unlabelled loads contributing to the Meter readings.

Fung Gásperi, César Augusto - One of the best experts on this subject based on the ideXlab platform.

  • Diseño y calibración de un medidor de tasa de inyección aguas arriba para inyectores GDI utilizando medidas instantáneas de presión
    'Universitat Politecnica de Valencia', 2020
    Co-Authors: Fung Gásperi, César Augusto
    Abstract:

    [ES] El proyecto realizado se enfoca en el desarrollo de un sistema de medida de tasa de inyección o tasímetro para los inyectores GDI (gasoline direct injection), o inyectores con funcionamiento similar, que sea aguas arriba respecto a la posición del inyector. Este sistema puede ser utilizado con cualquier tipo de inyector debido a que cuenta con un puerto adaptable a los distintos inyectores de características similares (mediante el diseño de un casquillo específico). El sistema tiene como función la medición de presiones en distintos puntos de la línea de inyección para, a través de un procesador de datos y las presiones, poder calcular la tasa de inyección. Ya existen los medidores de tasa convencionales, los cuales miden esta variable aguas abajo del inyector. El sistema propuesto traería mejoras en cuanto a la exactitud de la medida de la tasa de inyección, en la complejidad del montaje experimental y del tiempo requerido para la toma de la medida, ya que se puede trabajar a una presión cualesquiera, así como realizar los ensayos y las medidas al mismo tiempo. Debido a las características del tasímetro convencional (está lleno del líquido inyectado y a una cierta contrapresión) no permite replicar las condiciones del gas ambiente al que será inyectado el combustible, también se puede ocasionar una onda de contrapresión que modifique las medidas obtenidas a través de los sensores y los resultados finales por el modo de funcionamiento de éste, el nuevo sistema propuesto puede instalarse directamente en el sistema de inyección de un motor instrumentado. La realización del diseño de divide en: 1. Evaluación preliminar del concepto de medida. Se realizarán simulaciones 1D de dinámicas de ondas hidráulicas en modelos sencillos de tasímetros, a través del software Simulink. 2. Diseño hidráulico del sistema de medida. Una vez comprobado el correcto funcionamiento de estos modelos se procede a hacer más realista el modelo, cambiando las dimensiones y configuraciones de los distintos elementos del sistema como lo son los acumuladores, las líneas de inyección, los puntos de medición de presiones, y dividirlo en elementos finitos para evaluar la evolución de las gráficas a los largo del sistema y poder decidir los puntos óptimos donde realizar dichas medidas. Todo este proceso se realizará con el software Simulink. 3. Diseño mecánico del sistema de medida. A partir de las dimensiones obtenidas del diseño hidráulico se diseña el acumulador principal con forma cilíndrica, formado por el raíl y la línea corta, al cual se le acoplan por el extremo superior la tubería por donde llega el fluido, por el extremo inferior el inyector y los sensores de presión en los puntos elegidos mediantes las simulaciones de los modelos en Simulink. Ya que el acumulador está sometido a presiones altas se realizará un estudio estático con elementos finitos para evaluar si el ensamblaje soporta las condiciones de operación a las que será sometido. El diseño y estudio se realizarán con el software SolidWorks.[EN] The present project is focused on the development of an injection Rate Meter system or flow Rate Meter for GDI (Gasoline Direct Injection) injectors, or injectors with a similar functioning, namely that they are upstream relative to the injector's position. This system can be used with any injector type because it has a port that can adapt, through the design of a specific bushing, to different injectors with similar characteristics. The function of this system is to measure the pressure at different points in the injection line to, using a processor of data and pressures, calculate the injection Rate. Conventional Rate Meters already exist, and these types of Rate Meters measure the variable downstream of the injector. Because of the proposed system¿s ability to work at any pressure, and because trials and measurements could occur simultaneously, it would bring improvements regarding the accuracy of the injection Rate measurement, the complexity of the experimental equipment assemblage, and the time required to take a measurement. The characteristics of the conventional Rate Meter (it is filled with the injected liquid and at a certain counterpressure), do not allow it to replicate the ambient gas conditions in which the fuel is injected. Additionally, given this Meter¿s functioning mode, a counterpressure wave could be created that would modify the measurements obtained through the sensors and the results. The proposed new system can be installed directly in the injection system of an instrumented engine. The designing process can be divided into three main stages: 1. A preliminary evaluation of the measurement concept. 1D hydraulic waves dynamic simulations were made in simple models of flow Rate Meters using Simulink software. 2. The hydraulic design of the measurement system. Once the accuRate functioning of these models was verified, a more realistic model was created. This was done by changing the dimensions and configurations of the system's different elements, such as the accumulators, injection lines, and pressure measurement points. It was then divided into finite elements to evaluate the graphics' evolution throughout the system and to decide the optimum points where to take those measurements. This process was done using Simulink software. 3. The mechanical design of the measurement system. A cylinder-shaped principal accumulator was created using the dimensions obtained from the hydraulic design. The accumulator consists of a rail and a short line. To this accumulator a tube that allows fluid to come inside was added at the upper end, the injectors were added at the bottom end, and the pressure sensors were added at the optimum points that were determined via the Simulink models. Since the accumulator is exposed to high pressures, a static study with finite elements was conducted to evaluate if the assembly could resist the operational conditions it would be subjected to. The design and study were done using SolidWorks software.[CA] El projecte realitzat va ser enfocat en el desenvolupament d'un sistema de mesura de taxa d'injecció o "tasímetro" per als injectors GDI (Gasoline Direct Injection), o injectors amb funcionament similar, que siga aigües amunt respecte la posició de l'injector. Aquest sistema pot ser utilitzat amb qualsevol tipus d'injector, degut al seu port adaptable als distints injectors de característiques similars (mitjançant el disseny d'un casquet específic). El sistema té com a funció el mesurament de pressions a diferents punts de la línia d'injecció, per mitjà d'un processador de dades i pressions, que durà a terme el càlcul de la taxa d'injecció. Ja existeixen els mesuradors de taxa convencionals, els quals mesuren aquesta variable aigües avall del injector. El sistema proposat donaria millores en quant a l'exactitud de la mesura de la taxa d'injecció, en la complexitat del muntatge experimental i del temps requerit per a la toma de la mesura, ja que es pot treballar a qualsevol pressió, així com realitzar els assaigs i les mesures al mateix temps. Degut a les característiques del "tasímetro" convencional (està ple de líquid injectat i a una certa contrapressió) no permet replicar les condicions del gas ambient al que serà injectat el combustible, també es pot ocasionar una ona de contrapressió que modifique les mesures obtingudes a través dels sensors i els resultats finals per la manera de funcionament d'aquest, el nou sistema proposat pot instal·lar-se directament al sistema d'injecció d'un motor instrumentat.Fung Gásperi, CA. (2020). Diseño y calibración de un medidor de tasa de inyección aguas arriba para inyectores GDI utilizando medidas instantáneas de presión. http://hdl.handle.net/10251/153254TFG

  • Diseño y calibración de un medidor de tasa de inyección aguas arriba para inyectores GDI utilizando medidas instantáneas de presión
    'Universitat Politecnica de Valencia', 2020
    Co-Authors: Fung Gásperi, César Augusto
    Abstract:

    [ES] El proyecto realizado se enfoca en el desarrollo de un sistema de medida de tasa de inyección o tasímetro para los inyectores GDI (gasoline direct injection), o inyectores con funcionamiento similar, que sea aguas arriba respecto a la posición del inyector. Este sistema puede ser utilizado con cualquier tipo de inyector debido a que cuenta con un puerto adaptable a los distintos inyectores de características similares (mediante el diseño de un casquillo específico). El sistema tiene como función la medición de presiones en distintos puntos de la línea de inyección para, a través de un procesador de datos y las presiones, poder calcular la tasa de inyección. Ya existen los medidores de tasa convencionales, los cuales miden esta variable aguas abajo del inyector. El sistema propuesto traería mejoras en cuanto a la exactitud de la medida de la tasa de inyección, en la complejidad del montaje experimental y del tiempo requerido para la toma de la medida, ya que se puede trabajar a una presión cualesquiera, así como realizar los ensayos y las medidas al mismo tiempo. Debido a las características del tasímetro convencional (está lleno del líquido inyectado y a una cierta contrapresión) no permite replicar las condiciones del gas ambiente al que será inyectado el combustible, también se puede ocasionar una onda de contrapresión que modifique las medidas obtenidas a través de los sensores y los resultados finales por el modo de funcionamiento de éste, el nuevo sistema propuesto puede instalarse directamente en el sistema de inyección de un motor instrumentado. La realización del diseño de divide en: 1. Evaluación preliminar del concepto de medida. Se realizarán simulaciones 1D de dinámicas de ondas hidráulicas en modelos sencillos de tasímetros, a través del software Simulink. 2. Diseño hidráulico del sistema de medida. Una vez comprobado el correcto funcionamiento de estos modelos se procede a hacer más realista el modelo, cambiando las dimensiones y configuraciones de los distintos elementos del sistema como lo son los acumuladores, las líneas de inyección, los puntos de medición de presiones, y dividirlo en elementos finitos para evaluar la evolución de las gráficas a los largo del sistema y poder decidir los puntos óptimos donde realizar dichas medidas. Todo este proceso se realizará con el software Simulink. 3. Diseño mecánico del sistema de medida. A partir de las dimensiones obtenidas del diseño hidráulico se diseña el acumulador principal con forma cilíndrica, formado por el raíl y la línea corta, al cual se le acoplan por el extremo superior la tubería por donde llega el fluido, por el extremo inferior el inyector y los sensores de presión en los puntos elegidos mediantes las simulaciones de los modelos en Simulink. Ya que el acumulador está sometido a presiones altas se realizará un estudio estático con elementos finitos para evaluar si el ensamblaje soporta las condiciones de operación a las que será sometido. El diseño y estudio se realizarán con el software SolidWorks.[EN] The present project is focused on the development of an injection Rate Meter system or flow Rate Meter for GDI (Gasoline Direct Injection) injectors, or injectors with a similar functioning, namely that they are upstream relative to the injector's position. This system can be used with any injector type because it has a port that can adapt, through the design of a specific bushing, to different injectors with similar characteristics. The function of this system is to measure the pressure at different points in the injection line to, using a processor of data and pressures, calculate the injection Rate. Conventional Rate Meters already exist, and these types of Rate Meters measure the variable downstream of the injector. Because of the proposed system¿s ability to work at any pressure, and because trials and measurements could occur simultaneously, it would bring improvements regarding the accuracy of the injection Rate measurement, the complexity of the experimental equipment assemblage, and the time required to take a measurement. The characteristics of the conventional Rate Meter (it is filled with the injected liquid and at a certain counterpressure), do not allow it to replicate the ambient gas conditions in which the fuel is injected. Additionally, given this Meter¿s functioning mode, a counterpressure wave could be created that would modify the measurements obtained through the sensors and the results. The proposed new system can be installed directly in the injection system of an instrumented engine. The designing process can be divided into three main stages: 1. A preliminary evaluation of the measurement concept. 1D hydraulic waves dynamic simulations were made in simple models of flow Rate Meters using Simulink software. 2. The hydraulic design of the measurement system. Once the accuRate functioning of these models was verified, a more realistic model was created. This was done by changing the dimensions and configurations of the system's different elements, such as the accumulators, injection lines, and pressure measurement points. It was then divided into finite elements to evaluate the graphics' evolution throughout the system and to decide the optimum points where to take those measurements. This process was done using Simulink software. 3. The mechanical design of the measurement system. A cylinder-shaped principal accumulator was created using the dimensions obtained from the hydraulic design. The accumulator consists of a rail and a short line. To this accumulator a tube that allows fluid to come inside was added at the upper end, the injectors were added at the bottom end, and the pressure sensors were added at the optimum points that were determined via the Simulink models. Since the accumulator is exposed to high pressures, a static study with finite elements was conducted to evaluate if the assembly could resist the operational conditions it would be subjected to. The design and study were done using SolidWorks software.[CA] El projecte realitzat va ser enfocat en el desenvolupament d'un sistema de mesura de taxa d'injecció o "tasímetro" per als injectors GDI (Gasoline Direct Injection), o injectors amb funcionament similar, que siga aigües amunt respecte la posició de l'injector. Aquest sistema pot ser utilitzat amb qualsevol tipus d'injector, degut al seu port adaptable als distints injectors de característiques similars (mitjançant el disseny d'un casquet específic). El sistema té com a funció el mesurament de pressions a diferents punts de la línia d'injecció, per mitjà d'un processador de dades i pressions, que durà a terme el càlcul de la taxa d'injecció. Ja existeixen els mesuradors de taxa convencionals, els quals mesuren aquesta variable aigües avall del injector. El sistema proposat donaria millores en quant a l'exactitud de la mesura de la taxa d'injecció, en la complexitat del muntatge experimental i del temps requerit per a la toma de la mesura, ja que es pot treballar a qualsevol pressió, així com realitzar els assaigs i les mesures al mateix temps. Degut a les característiques del "tasímetro" convencional (està ple de líquid injectat i a una certa contrapressió) no permet replicar les condicions del gas ambient al que serà injectat el combustible, també es pot ocasionar una ona de contrapressió que modifique les mesures obtingudes a través dels sensors i els resultats finals per la manera de funcionament d'aquest, el nou sistema proposat pot instal·lar-se directament al sistema d'injecció d'un motor instrumentat.Fung Gásperi, CA. (2020). Diseño y calibración de un medidor de tasa de inyección aguas arriba para inyectores GDI utilizando medidas instantáneas de presión. Universitat Politècnica de València. http://hdl.handle.net/10251/153254TFG

Atsushi Toramaru - One of the best experts on this subject based on the ideXlab platform.

  • mnd microlite number density water exsolution Rate Meter
    Journal of Volcanology and Geothermal Research, 2008
    Co-Authors: Atsushi Toramaru, S Oyoshihara, Satoshi Noguchi, Akira Tsune
    Abstract:

    Abstract Microlites in effusive or pyroclastic rocks are possible indicators of water exsolution. In particular, the microlite number density (MND) is considered to be a function of the Rate of water exsolution from melt. In this paper, we have constructed a MND water exsolution Rate Meter based on the recent results of theory, experiments and the natural observation of crystallization kinetics. The MND method accounts for the effects of melt composition and water content on the diffusivity of crytallizing components in melt. By using this Meter, we can estimate the water exsolution Rate at the microlite nucleation depth from a MND value provided the crystal phase (plagioclase or clinopyroxene) is known. We applied the Meter to the case of the 1991–1995 dome eruption at Unzen and the 1986B subplinian eruption at Izu-Oshima. We obtained the water exsolution Rates in the range of 6.1 × 10− 6 to 2.8 × 10− 5 (wt.%/s) approximately at 70 (MPa) for Unzen (plagioclase MND = 1014 to 1015 (m− 3)) and 1.1 × 10− 3 to 1.1 × 10− 1 (wt.%/s) for Izu-Oshima (pyroxene MND = 1015 to 1017(m3)). Under the assumption of equilibrium vesiculation and steady state flow, the corresponding decompression Rate and ascent velocity are calculated in the range of 240 to 1100 (Pa/s) and 0.014 to 0.068 (m/s) for Unzen and 1.2 × 104 to 1.3 × 106 (Pa/s) and 1.3 to 133 (m/s) for Izu-Oshima. This contrast in the ascent velocity at the microlite nucleation depth is closely related to the reason why Unzen and Izu-Oshima revealed the different eruption styles, namely, dome growth and explosive eruption, respectively.

  • bnd bubble number density decompression Rate Meter for explosive volcanic eruptions
    Journal of Volcanology and Geothermal Research, 2006
    Co-Authors: Atsushi Toramaru
    Abstract:

    Abstract This decade has been witness to substantial progress in the understanding of bubble dynamics and its role in volcanic eruptions. A comparison between the results of experiments and a model for bubble nucleation shows that bubble number density (BND) can be calculated as a function of decompression Rate for given physical properties, such as the diffusivity of water in a silicate melt and interfacial tension, within an acceptable margin of error. Conversely, in this paper, we propose a method (hereafter referred to as BND decompression Rate Meter) to estimate the decompression Rate by using BND data of natural pumice samples from volcanic eruptions. As a result of the application of the BND decompression Rate Meter to pumice and scoria from explosive eruptions, it is found that the decompression Rates increase in the range from 10 6 to 10 8  (Pa/s) with the eruption column heights; these Rates are proportional to the 4th power of the eruption column heights and are linear to the discharge Rates. The absolute values of the estimated decompression Rates are very high and cannot be explained by the existing models of conduit flows. In order to explain such high Rates of decompression and the correlation with discharge Rate, we propose a possible model according to which the bubble nucleation propagates downward as a rarefaction shock wave in the conduit.

Lina Stankovic - One of the best experts on this subject based on the ideXlab platform.

  • non intrusive load disaggregation solutions for very low Rate smart Meter data
    Applied Energy, 2020
    Co-Authors: Bochao Zhao, Lina Stankovic, Vladimir Stankovic
    Abstract:

    Abstract With the active large-scale roll-out of smart Metering worldwide, details about the type of smart Meter data that will be available for analysis are emerging. Consequently, focus has steadily been shifting from analysis of high-Rate power readings (usually in kHz to MHz) to low-Rate power readings (sampled at 1–60 s) and very low-Rate Meter readings of the order of 15–60 min. This has triggered renewed research into practical non-intrusive load disaggregation of low- to very-low granularity Meter readings to address challenges not addressed by existing disaggregation approaches, namely, indistinct appliance ON/OFF transitions, increased likelihood of overlapping appliance usage within a sample and noise due to unknown appliances. In this paper, focusing on smart Meter readings at hourly resolution, three load disaggregation solutions are proposed based on: (i) optimisation (minimisation of error between aggregate and disaggregated loads), (ii) graph signal processing and (iii) convolutional neural network. These are benchmarked with state-of-the-art approaches, based on factorial hidden Markov model and combinatorial optimisation implemented in the NILMTK toolbox, and discriminative disaggregation sparse coding. The hourly electricity profile data is obtained from real-world active power readings from the REFIT dataset 1 over a period of longer than one year. All proposed disaggregation approaches outperform benchmarking methods for labelled appliances in terms of both energy performance metrics and faster execution time. The proposed approaches succeed in disaggregating, at very low resolutions, a wide range of loads including white goods even when there are unlabelled loads contributing to the Meter readings.