Reanalysis

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 91497 Experts worldwide ranked by ideXlab platform

Prashant D Sardeshmukh - One of the best experts on this subject based on the ideXlab platform.

  • trends and low frequency variability of extra tropical cyclone activity in the ensemble of twentieth century Reanalysis
    Climate Dynamics, 2013
    Co-Authors: Xiaolan L Wang, Francis W. Zwiers, Val R Swail, Gilbert P Compo, Prashant D Sardeshmukh, Rob Allan, Yang Feng
    Abstract:

    An objective cyclone tracking algorithm is applied to twentieth century Reanalysis (20CR) 6-hourly mean sea level pressure fields for the period 1871–2010 to infer historical trends and variability in extra-tropical cyclone activity. The tracking algorithm is applied both to the ensemble-mean analyses and to each of the 56 ensemble members individually. The ensemble-mean analyses are found to be unsuitable for accurately determining cyclone statistics. However, pooled cyclone statistics obtained by averaging statistics from individual members generally agree well with statistics from the NCEP-NCAR reanalyses for 1951–2010, although 20CR shows somewhat weaker cyclone activity over land and stronger activity over oceans. Both reanalyses show similar cyclone trend patterns in the northern hemisphere (NH) over 1951–2010. Homogenized pooled cyclone statistics are analyzed for trends and variability. Conclusions account for identified inhomogeneities, which occurred before 1949 in the NH and between 1951 and 1985 in the southern hemisphere (SH). Cyclone activity is estimated to have increased slightly over the period 1871–2010 in the NH. More substantial increases are seen in the SH. Notable regional and seasonal variations in trends are evident, as is profound decadal or longer scale variability. For example, the NH increases occur mainly in the mid-latitude Pacific and high-latitude Atlantic regions. For the North Atlantic-European region and southeast Australia, the 20CR cyclone trends are in agreement with trends in geostrophic wind extremes derived from in-situ surface pressure observations. European trends are also consistent with trends in the mean duration of wet spells derived from rain gauge data in Europe.

  • the twentieth century Reanalysis project
    Quarterly Journal of the Royal Meteorological Society, 2011
    Co-Authors: Gilbert P Compo, Jeffrey S Whitaker, Prashant D Sardeshmukh, N Matsui, Rob Allan, Xungang Yin, Byron E Gleason
    Abstract:

    The Twentieth Century Reanalysis (20CR) project is an international effort to produce a comprehensive global atmospheric circulation dataset spanning the twentieth century, assimilating only surface pressure reports and using observed monthly sea-surface temperature and sea-ice distributions as boundary conditions. It is chiefly motivated by a need to provide an observational dataset with quantified uncertainties for validations of climate model simulations of the twentieth century on all time-scales, with emphasis on the statistics of daily weather. It uses an Ensemble Kalman Filter data assimilation method with background ‘first guess’ fields supplied by an ensemble of forecasts from a global numerical weather prediction model. This directly yields a global analysis every 6 hours as the most likely state of the atmosphere, and also an uncertainty estimate of that analysis. The 20CR dataset provides the first estimates of global tropospheric variability, and of the dataset's time-varying quality, from 1871 to the present at 6-hourly temporal and 2° spatial resolutions. Intercomparisons with independent radiosonde data indicate that the reanalyses are generally of high quality. The quality in the extratropical Northern Hemisphere throughout the century is similar to that of current three-day operational NWP forecasts. Intercomparisons over the second half-century of these surface-based reanalyses with other reanalyses that also make use of upper-air and satellite data are equally encouraging. It is anticipated that the 20CR dataset will be a valuable resource to the climate research community for both model validations and diagnostic studies. Some surprising results are already evident. For instance, the long-term trends of indices representing the North Atlantic Oscillation, the tropical Pacific Walker Circulation, and the Pacific–North American pattern are weak or non-existent over the full period of record. The long-term trends of zonally averaged precipitation minus evaporation also differ in character from those in climate model simulations of the twentieth century.

  • the twentieth century Reanalysis project
    Quarterly Journal of the Royal Meteorological Society, 2011
    Co-Authors: Gilbert P Compo, Jeffrey S Whitaker, Prashant D Sardeshmukh, N Matsui, Rob Allan, B Gleason, Russell S Vose
    Abstract:

    The Twentieth Century Reanalysis (20CR) project is an international effort to produce a comprehensive global atmospheric circulation dataset spanning the twentieth century, assimilating only surface pressure reports and using observed monthly sea-surface temperature and sea-ice distributions as boundary conditions. It is chiefly motivated by a need to provide an observational dataset with quantified uncertainties for validations of climate model simulations of the twentieth century on all time-scales, with emphasis on the statistics of daily weather. It uses an Ensemble Kalman Filter data assimilation method with background ‘first guess’ fields supplied by an ensemble of forecasts from a global numerical weather prediction model. This directly yields a global analysis every 6 hours as the most likely state of the atmosphere, and also an uncertainty estimate of that analysis. The 20CR dataset provides the first estimates of global tropospheric variability, and of the dataset's time-varying quality, from 1871 to the present at 6-hourly temporal and 2° spatial resolutions. Intercomparisons with independent radiosonde data indicate that the reanalyses are generally of high quality. The quality in the extratropical Northern Hemisphere throughout the century is similar to that of current three-day operational NWP forecasts. Intercomparisons over the second half-century of these surface-based reanalyses with other reanalyses that also make use of upper-air and satellite data are equally encouraging. It is anticipated that the 20CR dataset will be a valuable resource to the climate research community for both model validations and diagnostic studies. Some surprising results are already evident. For instance, the long-term trends of indices representing the North Atlantic Oscillation, the tropical Pacific Walker Circulation, and the Pacific–North American pattern are weak or non-existent over the full period of record. The long-term trends of zonally averaged precipitation minus evaporation also differ in character from those in climate model simulations of the twentieth century. Copyright © 2011 Royal Meteorological Society and Crown Copyright.

Gilbert P Compo - One of the best experts on this subject based on the ideXlab platform.

  • trends and low frequency variability of extra tropical cyclone activity in the ensemble of twentieth century Reanalysis
    Climate Dynamics, 2013
    Co-Authors: Xiaolan L Wang, Francis W. Zwiers, Val R Swail, Gilbert P Compo, Prashant D Sardeshmukh, Rob Allan, Yang Feng
    Abstract:

    An objective cyclone tracking algorithm is applied to twentieth century Reanalysis (20CR) 6-hourly mean sea level pressure fields for the period 1871–2010 to infer historical trends and variability in extra-tropical cyclone activity. The tracking algorithm is applied both to the ensemble-mean analyses and to each of the 56 ensemble members individually. The ensemble-mean analyses are found to be unsuitable for accurately determining cyclone statistics. However, pooled cyclone statistics obtained by averaging statistics from individual members generally agree well with statistics from the NCEP-NCAR reanalyses for 1951–2010, although 20CR shows somewhat weaker cyclone activity over land and stronger activity over oceans. Both reanalyses show similar cyclone trend patterns in the northern hemisphere (NH) over 1951–2010. Homogenized pooled cyclone statistics are analyzed for trends and variability. Conclusions account for identified inhomogeneities, which occurred before 1949 in the NH and between 1951 and 1985 in the southern hemisphere (SH). Cyclone activity is estimated to have increased slightly over the period 1871–2010 in the NH. More substantial increases are seen in the SH. Notable regional and seasonal variations in trends are evident, as is profound decadal or longer scale variability. For example, the NH increases occur mainly in the mid-latitude Pacific and high-latitude Atlantic regions. For the North Atlantic-European region and southeast Australia, the 20CR cyclone trends are in agreement with trends in geostrophic wind extremes derived from in-situ surface pressure observations. European trends are also consistent with trends in the mean duration of wet spells derived from rain gauge data in Europe.

  • the twentieth century Reanalysis project
    Quarterly Journal of the Royal Meteorological Society, 2011
    Co-Authors: Gilbert P Compo, Jeffrey S Whitaker, Prashant D Sardeshmukh, N Matsui, Rob Allan, Xungang Yin, Byron E Gleason
    Abstract:

    The Twentieth Century Reanalysis (20CR) project is an international effort to produce a comprehensive global atmospheric circulation dataset spanning the twentieth century, assimilating only surface pressure reports and using observed monthly sea-surface temperature and sea-ice distributions as boundary conditions. It is chiefly motivated by a need to provide an observational dataset with quantified uncertainties for validations of climate model simulations of the twentieth century on all time-scales, with emphasis on the statistics of daily weather. It uses an Ensemble Kalman Filter data assimilation method with background ‘first guess’ fields supplied by an ensemble of forecasts from a global numerical weather prediction model. This directly yields a global analysis every 6 hours as the most likely state of the atmosphere, and also an uncertainty estimate of that analysis. The 20CR dataset provides the first estimates of global tropospheric variability, and of the dataset's time-varying quality, from 1871 to the present at 6-hourly temporal and 2° spatial resolutions. Intercomparisons with independent radiosonde data indicate that the reanalyses are generally of high quality. The quality in the extratropical Northern Hemisphere throughout the century is similar to that of current three-day operational NWP forecasts. Intercomparisons over the second half-century of these surface-based reanalyses with other reanalyses that also make use of upper-air and satellite data are equally encouraging. It is anticipated that the 20CR dataset will be a valuable resource to the climate research community for both model validations and diagnostic studies. Some surprising results are already evident. For instance, the long-term trends of indices representing the North Atlantic Oscillation, the tropical Pacific Walker Circulation, and the Pacific–North American pattern are weak or non-existent over the full period of record. The long-term trends of zonally averaged precipitation minus evaporation also differ in character from those in climate model simulations of the twentieth century.

  • the twentieth century Reanalysis project
    Quarterly Journal of the Royal Meteorological Society, 2011
    Co-Authors: Gilbert P Compo, Jeffrey S Whitaker, Prashant D Sardeshmukh, N Matsui, Rob Allan, B Gleason, Russell S Vose
    Abstract:

    The Twentieth Century Reanalysis (20CR) project is an international effort to produce a comprehensive global atmospheric circulation dataset spanning the twentieth century, assimilating only surface pressure reports and using observed monthly sea-surface temperature and sea-ice distributions as boundary conditions. It is chiefly motivated by a need to provide an observational dataset with quantified uncertainties for validations of climate model simulations of the twentieth century on all time-scales, with emphasis on the statistics of daily weather. It uses an Ensemble Kalman Filter data assimilation method with background ‘first guess’ fields supplied by an ensemble of forecasts from a global numerical weather prediction model. This directly yields a global analysis every 6 hours as the most likely state of the atmosphere, and also an uncertainty estimate of that analysis. The 20CR dataset provides the first estimates of global tropospheric variability, and of the dataset's time-varying quality, from 1871 to the present at 6-hourly temporal and 2° spatial resolutions. Intercomparisons with independent radiosonde data indicate that the reanalyses are generally of high quality. The quality in the extratropical Northern Hemisphere throughout the century is similar to that of current three-day operational NWP forecasts. Intercomparisons over the second half-century of these surface-based reanalyses with other reanalyses that also make use of upper-air and satellite data are equally encouraging. It is anticipated that the 20CR dataset will be a valuable resource to the climate research community for both model validations and diagnostic studies. Some surprising results are already evident. For instance, the long-term trends of indices representing the North Atlantic Oscillation, the tropical Pacific Walker Circulation, and the Pacific–North American pattern are weak or non-existent over the full period of record. The long-term trends of zonally averaged precipitation minus evaporation also differ in character from those in climate model simulations of the twentieth century. Copyright © 2011 Royal Meteorological Society and Crown Copyright.

Masatomo Fujiwara - One of the best experts on this subject based on the ideXlab platform.

  • zonal mean data set of global atmospheric reanalyses on pressure levels
    Earth System Science Data, 2018
    Co-Authors: Patrick Martineau, Jonathon S. Wright, Masatomo Fujiwara
    Abstract:

    Abstract. This data set, which is prepared for the Stratosphere–troposphere Processes And their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP), provides several zonal-mean diagnostics computed from Reanalysis data on pressure levels. Diagnostics are currently provided for a variety of reanalyses, including ERA-40, ERA-Interim, ERA-20C, NCEP–NCAR, NCEP–DOE, CFSR, 20CR v2 and v2c, JRA-25, JRA-55, JRA-55C, JRA-55AMIP, MERRA, and MERRA-2. The data set will be expanded to include additional reanalyses as they become available. Basic dynamical variables (such as temperature, geopotential height, and three-dimensional winds) are provided in addition to a complete set of terms from the Eulerian-mean and transformed-Eulerian-mean momentum equations. Total diabatic heating and its long-wave and shortwave components are included as availability permits, along with heating rates diagnosed from the basic dynamical variables using the zonal-mean thermodynamic equation. Two versions of the data set are provided, one that uses horizontal and vertical grids provided by the various Reanalysis centers and another that uses a common grid (CG) to facilitate comparison among data sets. For the common grid, all diagnostics are interpolated horizontally onto a regular 2.5 ∘ × 2.5 ∘ grid for a subset of pressure levels that are common among all included reanalyses. The dynamical ( Martineau ,  2017 ,  https://doi.org/10.5285/b241a7f536a244749662360bd7839312 ) and diabatic ( Wright ,  2017 ,  https://doi.org/10.5285/70146c789eda4296a3c3ab6706931d56 ) variables are archived and maintained by the Centre for Environmental Data Analysis (CEDA).

  • Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the Reanalysis systems
    2016
    Co-Authors: Masatomo Fujiwara, Jonathon S. Wright, Gloria L. Manney, Lesley J. Gray, James Anstey, Thomas Birner, Sean Davis, Edwin P. Gerber, V. Lynn Harvey, Michaela I. Hegglin
    Abstract:

    Abstract. The climate research community uses atmospheric Reanalysis data sets to understand a wide range of processes and variability in the atmosphere, yet different reanalyses may give very different results for the same diagnostics. The Stratosphere–troposphere Processes And their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP) is a coordinated activity to compare Reanalysis data sets using a variety of key diagnostics. The objectives of this project are to identify differences among reanalyses and understand their underlying causes, to provide guidance on appropriate usage of various Reanalysis products in scientific studies, particularly those of relevance to SPARC, and to contribute to future improvements in the Reanalysis products by establishing collaborative links between Reanalysis centres and data users. The project focuses predominantly on differences among reanalyses, although studies that include operational analyses and studies comparing reanalyses with observations are also included when appropriate. The emphasis is on diagnostics of the upper troposphere, stratosphere, and lower mesosphere. This overview paper for the S-RIP special issue summarizes the motivation and goals of the S-RIP activity, and reviews key technical aspects of the Reanalysis data sets that are the focus of the S-RIP report.

  • introduction to the sparc Reanalysis intercomparison project s rip and overview of the Reanalysis systems
    Atmospheric Chemistry and Physics, 2016
    Co-Authors: Masatomo Fujiwara, Jonathon S. Wright, Gloria L. Manney, Lesley J. Gray, James Anstey, Thomas Birner, Edwin P. Gerber, Sean M Davis, Lynn V Harvey
    Abstract:

    The climate research community uses atmospheric Reanalysis data sets to understand a wide range of processes and variability in the atmosphere, yet different reanalyses may give very different results for the same diagnostics. The Stratosphere–troposphere Processes And their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP) is a coordinated activity to compare Reanalysis data sets using a variety of key diagnostics. The objectives of this project are to identify differences among reanalyses and understand their underlying causes, to provide guidance on appropriate usage of various Reanalysis products in scientific studies, particularly those of relevance to SPARC, and to contribute to future improvements in the Reanalysis products by establishing collaborative links between Reanalysis centres and data users. The project focuses predominantly on differences among reanalyses, although studies that include operational analyses and studies comparing reanalyses with observations are also included when appropriate. The emphasis is on diagnostics of the upper troposphere, stratosphere, and lower mesosphere. This paper summarizes the motivation and goals of the S-RIP activity and extensively reviews key technical aspects of the Reanalysis data sets that are the focus of this activity. The special issue "The SPARC Reanalysis Intercomparison Project (S-RIP)" in this journal serves to collect research with relevance to the S-RIP in preparation for the publication of the planned two (interim and full) S-RIP reports.

N Matsui - One of the best experts on this subject based on the ideXlab platform.

  • the twentieth century Reanalysis project
    Quarterly Journal of the Royal Meteorological Society, 2011
    Co-Authors: Gilbert P Compo, Jeffrey S Whitaker, Prashant D Sardeshmukh, N Matsui, Rob Allan, Xungang Yin, Byron E Gleason
    Abstract:

    The Twentieth Century Reanalysis (20CR) project is an international effort to produce a comprehensive global atmospheric circulation dataset spanning the twentieth century, assimilating only surface pressure reports and using observed monthly sea-surface temperature and sea-ice distributions as boundary conditions. It is chiefly motivated by a need to provide an observational dataset with quantified uncertainties for validations of climate model simulations of the twentieth century on all time-scales, with emphasis on the statistics of daily weather. It uses an Ensemble Kalman Filter data assimilation method with background ‘first guess’ fields supplied by an ensemble of forecasts from a global numerical weather prediction model. This directly yields a global analysis every 6 hours as the most likely state of the atmosphere, and also an uncertainty estimate of that analysis. The 20CR dataset provides the first estimates of global tropospheric variability, and of the dataset's time-varying quality, from 1871 to the present at 6-hourly temporal and 2° spatial resolutions. Intercomparisons with independent radiosonde data indicate that the reanalyses are generally of high quality. The quality in the extratropical Northern Hemisphere throughout the century is similar to that of current three-day operational NWP forecasts. Intercomparisons over the second half-century of these surface-based reanalyses with other reanalyses that also make use of upper-air and satellite data are equally encouraging. It is anticipated that the 20CR dataset will be a valuable resource to the climate research community for both model validations and diagnostic studies. Some surprising results are already evident. For instance, the long-term trends of indices representing the North Atlantic Oscillation, the tropical Pacific Walker Circulation, and the Pacific–North American pattern are weak or non-existent over the full period of record. The long-term trends of zonally averaged precipitation minus evaporation also differ in character from those in climate model simulations of the twentieth century.

  • the twentieth century Reanalysis project
    Quarterly Journal of the Royal Meteorological Society, 2011
    Co-Authors: Gilbert P Compo, Jeffrey S Whitaker, Prashant D Sardeshmukh, N Matsui, Rob Allan, B Gleason, Russell S Vose
    Abstract:

    The Twentieth Century Reanalysis (20CR) project is an international effort to produce a comprehensive global atmospheric circulation dataset spanning the twentieth century, assimilating only surface pressure reports and using observed monthly sea-surface temperature and sea-ice distributions as boundary conditions. It is chiefly motivated by a need to provide an observational dataset with quantified uncertainties for validations of climate model simulations of the twentieth century on all time-scales, with emphasis on the statistics of daily weather. It uses an Ensemble Kalman Filter data assimilation method with background ‘first guess’ fields supplied by an ensemble of forecasts from a global numerical weather prediction model. This directly yields a global analysis every 6 hours as the most likely state of the atmosphere, and also an uncertainty estimate of that analysis. The 20CR dataset provides the first estimates of global tropospheric variability, and of the dataset's time-varying quality, from 1871 to the present at 6-hourly temporal and 2° spatial resolutions. Intercomparisons with independent radiosonde data indicate that the reanalyses are generally of high quality. The quality in the extratropical Northern Hemisphere throughout the century is similar to that of current three-day operational NWP forecasts. Intercomparisons over the second half-century of these surface-based reanalyses with other reanalyses that also make use of upper-air and satellite data are equally encouraging. It is anticipated that the 20CR dataset will be a valuable resource to the climate research community for both model validations and diagnostic studies. Some surprising results are already evident. For instance, the long-term trends of indices representing the North Atlantic Oscillation, the tropical Pacific Walker Circulation, and the Pacific–North American pattern are weak or non-existent over the full period of record. The long-term trends of zonally averaged precipitation minus evaporation also differ in character from those in climate model simulations of the twentieth century. Copyright © 2011 Royal Meteorological Society and Crown Copyright.

Sean M Davis - One of the best experts on this subject based on the ideXlab platform.

  • The tropical tropopause layer in Reanalysis data sets
    Atmospheric Chemistry and Physics, 2019
    Co-Authors: Susann Tegtmeier, James Anstey, Sean M Davis, Rossana Dragani, Yayoi Harada, Ioana Ivanciu, Robin Pilch Kedzierski, Kirstin Krüger, Bernard Legras, Craig S. Long
    Abstract:

    Abstract. The tropical tropopause layer (TTL) is the transition region between the well mixed, convective troposphere and the radiatively controlled stratosphere with air masses showing chemical and dynamical properties of both regions. The representation of the TTL in meteorological Reanalysis data sets is important for studying the complex interactions of circulation, convection, trace gases, clouds and radiation. In this paper, we present the evaluation of TTL characteristics in Reanalysis data sets that has been performed as part of the SPARC (Stratosphere– troposphere Processes and their Role in Climate) Reanalysis Intercomparison Project (S-RIP). The most recent atmospheric Reanalysis data sets all provide realistic representations of the major characteristics of the temperature structure within the TTL. There is good agreement between Reanalysis estimates of tropical mean temperatures and radio occultation data, with relatively small cold biases for most data sets. Temperatures at the cold point and lapse rate tropopause levels, on the other hand, show warm biases in reanalyses when compared to observations. This tropopause-level warm bias is related to the vertical resolution of the Reanalysis data, with the smallest bias found for data sets with the highest vertical resolution around the tropopause. Differences of the cold point temperature maximise over equatorial Africa, related to Kelvin wave activity and associated disturbances in TTL temperatures. Model simulations of air mass transport into the stratosphere driven by reanalyses with a warm cold point bias can be expected to have too little dehydration. Interannual variability in Reanalysis temperatures is best constrained in the upper TTL, with larger differences at levels below the cold point. The reanalyses reproduce the temperature responses to major dynamical and radiative signals such as volcanic eruptions and the QBO. Long-term Reanalysis trends in temperature in the upper TTL show good agreement with trends derived from adjusted radiosonde data sets indicating significant stratospheric cooling of around −0.5 to −1 K/decade. At 100 hPa and the cold point, most of the reanalyses suggest small but significant cooling trends of −0.3 to −0.6 K/decade that are statistically consistent with trends based on the adjusted radiosonde data sets. Advances of the Reanalysis and observational systems over the last decades have led to a clear improvement of the TTL reanalyses products over time. Biases of the temperature profiles and differences in interannual variability clearly decreased in 2006, when densely sampled radio occultation data started being assimilated by the reanalyses. While there is an overall good agreement, different reanalyses offer different advantages in the TTL such as realistic profile and cold point temperature, continuous time series or a realistic representation of signals of interannual variability. Their use in model simulations and in comparisons with climate model output should be tailored to their specific strengths and weaknesses.

  • introduction to the sparc Reanalysis intercomparison project s rip and overview of the Reanalysis systems
    Atmospheric Chemistry and Physics, 2016
    Co-Authors: Masatomo Fujiwara, Jonathon S. Wright, Gloria L. Manney, Lesley J. Gray, James Anstey, Thomas Birner, Edwin P. Gerber, Sean M Davis, Lynn V Harvey
    Abstract:

    The climate research community uses atmospheric Reanalysis data sets to understand a wide range of processes and variability in the atmosphere, yet different reanalyses may give very different results for the same diagnostics. The Stratosphere–troposphere Processes And their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP) is a coordinated activity to compare Reanalysis data sets using a variety of key diagnostics. The objectives of this project are to identify differences among reanalyses and understand their underlying causes, to provide guidance on appropriate usage of various Reanalysis products in scientific studies, particularly those of relevance to SPARC, and to contribute to future improvements in the Reanalysis products by establishing collaborative links between Reanalysis centres and data users. The project focuses predominantly on differences among reanalyses, although studies that include operational analyses and studies comparing reanalyses with observations are also included when appropriate. The emphasis is on diagnostics of the upper troposphere, stratosphere, and lower mesosphere. This paper summarizes the motivation and goals of the S-RIP activity and extensively reviews key technical aspects of the Reanalysis data sets that are the focus of this activity. The special issue "The SPARC Reanalysis Intercomparison Project (S-RIP)" in this journal serves to collect research with relevance to the S-RIP in preparation for the publication of the planned two (interim and full) S-RIP reports.