Reconnaissance

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 162972 Experts worldwide ranked by ideXlab platform

R. Todd Clancy - One of the best experts on this subject based on the ideXlab platform.

  • compact Reconnaissance imaging spectrometer for mars crism on mars Reconnaissance orbiter mro
    Journal of Geophysical Research, 2007
    Co-Authors: S L Murchie, J P Bibring, R Arvidson, K Beisser, Peter D Bedini, J L Bishop, J Boldt, P J Cavender, T Choo, R. Todd Clancy
    Abstract:

    [1] The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is a hyperspectral imager on the Mars Reconnaissance Orbiter (MRO) spacecraft. CRISM consists of three subassemblies, a gimbaled Optical Sensor Unit (OSU), a Data Processing Unit (DPU), and the Gimbal Motor Electronics (GME). CRISM's objectives are (1) to map the entire surface using a subset of bands to characterize crustal mineralogy, (2) to map the mineralogy of key areas at high spectral and spatial resolution, and (3) to measure spatial and seasonal variations in the atmosphere. These objectives are addressed using three major types of observations. In multispectral mapping mode, with the OSU pointed at planet nadir, data are collected at a subset of 72 wavelengths covering key mineralogic absorptions and binned to pixel footprints of 100 or 200 m/pixel. Nearly the entire planet can be mapped in this fashion. In targeted mode the OSU is scanned to remove most along-track motion, and a region of interest is mapped at full spatial and spectral resolution (15–19 m/pixel, 362–3920 nm at 6.55 nm/channel). Ten additional abbreviated, spatially binned images are taken before and after the main image, providing an emission phase function (EPF) of the site for atmospheric study and correction of surface spectra for atmospheric effects. In atmospheric mode, only the EPF is acquired. Global grids of the resulting lower data volume observations are taken repeatedly throughout the Martian year to measure seasonal variations in atmospheric properties. Raw, calibrated, and map-projected data are delivered to the community with a spectral library to aid in interpretation.

  • crism compact Reconnaissance imaging spectrometer for mars on the mars Reconnaissance orbiter
    Mars Infrared Spectroscopy: From Theory and the Laboratory To Field Observations, 2002
    Co-Authors: S Murchie, R. Todd Clancy, J P Bibring, R Arvidson, O Barnouinjha, K Beisser, J Bishop, John D Boldt, Tech H Choo, E H Darlington
    Abstract:

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on the Mars Reconnaissance Orbiter (MRO) will conduct a comprehensive series of investigations of the Martian surface and atmosphere. The investigations will be accomplished using an instrument design that provides high spatial and spectral resolutions, extended wavelength range, and ability to gimbal through a range of orientations. Baseline investigations include a near-global survey to find high science priority sites, full-resolution measurement of thousands of such sites, and tracking of seasonal variations in atmospheric and surface properties.

Pinquie Julie - One of the best experts on this subject based on the ideXlab platform.

  • Comparaison de systèmes automatiques de Reconnaissance grand vocabulaire appliqué à de la parole pathologique
    CIPA : Centre international de Phonétique Appliquée, 2019
    Co-Authors: Farinas Jérome, Pellegrini Thomas, Pinquie Julie
    Abstract:

    Les performances actuelles des systèmes automatiques de Reconnaissance de la parole grand vocabulaire permettent d'envisager des applications dans le domaine de la santé. Cela permettrait d'envisager des automatisations de divers tests (par exemple la fluence verbale) mais également d'apporter des informations objectives d'assez haut niveau issues de la voix (par exemple des mesures d'intelligibilité). Mais comment se comportent ces systèmes automatiques de Reconnaissance de la parole sur des voix pathologiques ? Une solution entièrement automatique est- elle envisageable ? Dans le cadre d'une étude financée par la Société d'Accélération et de Transfert Technologique Toulouse Tech Transfert, une évaluation de systèmes de transcription académiques et industriels a été menée sur un corpus de parole de 385 minutes. Les données sont issues d'enregistrements produits dans différentes conditions : différents styles de parole, environnements bruités, locuteurs avec accents régionaux, personnes atteintes de cancers des voix aériennes supérieures présentant différents degrés de sévérité (extraits du corpus PARALOTHEQUE/C2SI (Astesano 2018)) et également des enregistrements de parole simulant différents degrés de presbyacousie (projet ARCHEAN/Projet AGILE IT (Fontan 2017)). Dix systèmes ont ainsi été évalués : Authôt (société française), Bing de Microsoft, Google, IBM ViaVoice, Nuance, Speechmatics, Sphinx, Wit ainsi que les laboratoires de recherche LIA et IRIT. Aucune adaptation particulière n'a été effectuée sur ce type de données. En effet, une phase d'adaptation permettrait de mettre en meilleure adéquation les modèles (acoustiques et de langage) utilisés par les systèmes de Reconnaissance et les enregistrements qui leur sont soumis. Les performances ne sont bien évidemment pas aussi bonnes que celles obtenues sur des enregistrements de parole en conditions normales: environ 94 % de bonnes Reconnaissances sur un corpus de 12.500 h d'entrainement (Chiu, 2018). Par exemple, le meilleur système atteint seulement 38 % de taux de Reconnaissance de mots sur des voix cancer. Les résultats présentés ici sont donc « bruts » mais permettent d'avoir une vue sur les performances que nous pouvons obtenir directement en utilisant ces services/systèmes. Cela permet également de mesurer l'effort à fournir pour collecter et annoter des données en quantité suffisante pour adapter et rendre pleinement utilisables de tels systèmes afin de traiter des données de voix pathologique

  • Comparaison de systèmes automatiques de Reconnaissance grand vocabulaire appliqué à de la parole pathologique
    HAL CCSD, 2019
    Co-Authors: Farinas Jérome, Pellegrini Thomas, Pinquie Julie
    Abstract:

    International audienceLes performances actuelles des systèmes automatiques de Reconnaissance de la parole grand vocabulaire permettent d'envisager des applications dans le domaine de la santé. Cela permettrait d'envisager des automatisations de divers tests (par exemple la fluence verbale) mais également d'apporter des informations objectives d'assez haut niveau issues de la voix (par exemple des mesures d'intelligibilité). Mais comment se comportent ces systèmes automatiques de Reconnaissance de la parole sur des voix pathologiques ? Une solution entièrement automatique est- elle envisageable ? Dans le cadre d'une étude financée par la Société d'Accélération et de Transfert Technologique Toulouse Tech Transfert, une évaluation de systèmes de transcription académiques et industriels a été menée sur un corpus de parole de 385 minutes. Les données sont issues d'enregistrements produits dans différentes conditions : différents styles de parole, environnements bruités, locuteurs avec accents régionaux, personnes atteintes de cancers des voix aériennes supérieures présentant différents degrés de sévérité (extraits du corpus PARALOTHEQUE/C2SI (Astesano 2018)) et également des enregistrements de parole simulant différents degrés de presbyacousie (projet ARCHEAN/Projet AGILE IT (Fontan 2017)). Dix systèmes ont ainsi été évalués : Authôt (société française), Bing de Microsoft, Google, IBM ViaVoice, Nuance, Speechmatics, Sphinx, Wit ainsi que les laboratoires de recherche LIA et IRIT. Aucune adaptation particulière n'a été effectuée sur ce type de données. En effet, une phase d'adaptation permettrait de mettre en meilleure adéquation les modèles (acoustiques et de langage) utilisés par les systèmes de Reconnaissance et les enregistrements qui leur sont soumis. Les performances ne sont bien évidemment pas aussi bonnes que celles obtenues sur des enregistrements de parole en conditions normales: environ 94 % de bonnes Reconnaissances sur un corpus de 12.500 h d'entrainement (Chiu, 2018). Par exemple, le meilleur système atteint seulement 38 % de taux de Reconnaissance de mots sur des voix cancer. Les résultats présentés ici sont donc « bruts » mais permettent d'avoir une vue sur les performances que nous pouvons obtenir directement en utilisant ces services/systèmes. Cela permet également de mesurer l'effort à fournir pour collecter et annoter des données en quantité suffisante pour adapter et rendre pleinement utilisables de tels systèmes afin de traiter des données de voix pathologique

S L Murchie - One of the best experts on this subject based on the ideXlab platform.

  • compact Reconnaissance imaging spectrometer for mars crism on mars Reconnaissance orbiter mro
    Journal of Geophysical Research, 2007
    Co-Authors: S L Murchie, J P Bibring, R Arvidson, K Beisser, Peter D Bedini, J L Bishop, J Boldt, P J Cavender, T Choo, R. Todd Clancy
    Abstract:

    [1] The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is a hyperspectral imager on the Mars Reconnaissance Orbiter (MRO) spacecraft. CRISM consists of three subassemblies, a gimbaled Optical Sensor Unit (OSU), a Data Processing Unit (DPU), and the Gimbal Motor Electronics (GME). CRISM's objectives are (1) to map the entire surface using a subset of bands to characterize crustal mineralogy, (2) to map the mineralogy of key areas at high spectral and spatial resolution, and (3) to measure spatial and seasonal variations in the atmosphere. These objectives are addressed using three major types of observations. In multispectral mapping mode, with the OSU pointed at planet nadir, data are collected at a subset of 72 wavelengths covering key mineralogic absorptions and binned to pixel footprints of 100 or 200 m/pixel. Nearly the entire planet can be mapped in this fashion. In targeted mode the OSU is scanned to remove most along-track motion, and a region of interest is mapped at full spatial and spectral resolution (15–19 m/pixel, 362–3920 nm at 6.55 nm/channel). Ten additional abbreviated, spatially binned images are taken before and after the main image, providing an emission phase function (EPF) of the site for atmospheric study and correction of surface spectra for atmospheric effects. In atmospheric mode, only the EPF is acquired. Global grids of the resulting lower data volume observations are taken repeatedly throughout the Martian year to measure seasonal variations in atmospheric properties. Raw, calibrated, and map-projected data are delivered to the community with a spectral library to aid in interpretation.

  • crism compact Reconnaissance imaging spectrometer for mars on mro mars Reconnaissance orbiter
    Fourth International Asia-Pacific Environmental Remote Sensing Symposium 2004: Remote Sensing of the Atmosphere Ocean Environment and Space, 2004
    Co-Authors: S L Murchie, J P Bibring, R Arvidson, K Beisser, John D Boldt, Tech H Choo, Todd R Clancy, Peter D Bedini, J L Bishop, E H Darlington
    Abstract:

    CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) is a hyperspectral imager that will be launched on the MRO (Mars Reconnaissance Orbiter) spacecraft in August 2005. MRO’s objectives are to recover climate science originally to have been conducted on the Mars Climate Orbiter (MCO), to identify and characterize sites of possible aqueous activity to which future landed missions may be sent, and to characterize the composition, geology, and stratigraphy of Martian surface deposits. MRO will operate from a sun-synchronous, near-circular (255x320 km altitude), near-polar orbit with a mean local solar time of 3 PM. CRISM’s spectral range spans the ultraviolet (UV) to the mid-wave infrared (MWIR), 383 nm to 3960 nm. The instrument utilizes a Ritchey-Chretien telescope with a 2.12° field-of-view (FOV) to focus light on the entrance slit of a dual spectrometer. Within the spectrometer, light is split by a dichroic into VNIR (visible-near-infrared, 383-1071 nm) and IR (infrared, 988-3960 nm) beams. Each beam is directed into a separate modified Offner spectrometer that focuses a spectrally dispersed image of the slit onto a two dimensional focal plane (FP). The IR FP is a 640 x 480 HgCdTe area array; the VNIR FP is a 640 x 480 silicon photodiode area array. The spectral image is contiguously sampled with a 6.6 nm spectral spacing and an instantaneous field of view of 61.5 μradians. The Optical Sensor Unit (OSU) can be gimbaled to take out along-track smear, allowing long integration times that afford high signal-to-noise ratio (SNR) at high spectral and spatial resolution. The scan motor and encoder are controlled by a separately housed Gimbal Motor Electronics (GME) unit. A Data Processing Unit (DPU) provides power, command and control, and data editing and compression. CRISM acquires three major types of observations of the Martian surface and atmosphere. In Multispectral Mapping Mode, with the gimbal pointed at planet nadir, data are collected at frame rates of 15 or 30 Hz. A commandable subset of wavelengths is saved by the DPU and binned 5:1 or 10:1 cross-track. The combination of frame rates and binning yields pixel footprints of 100 or 200 m. In this mode, nearly the entire planet can be mapped at wavelengths of key mineralogic absorption bands to select regions of interest. In Targeted Mode, the gimbal is scanned over ±60° from nadir to remove most along-track motion, and a region of interest is mapped at full spatial and spectral resolution. Ten additional abbreviated, pixel-binned observations are taken before and after the main hyperspectral image at longer atmospheric path lengths, providing an emission phase function (EPF) of the site for atmospheric study and correction of surface spectra for atmospheric effects. In Atmospheric Mode, the central observation is eliminated and only the EPF is acquired. Global grids of the resulting lower data volume observation are taken repeatedly throughout the Martian year to measure seasonal variations in atmospheric properties.

R Arvidson - One of the best experts on this subject based on the ideXlab platform.

  • compact Reconnaissance imaging spectrometer for mars crism on mars Reconnaissance orbiter mro
    Journal of Geophysical Research, 2007
    Co-Authors: S L Murchie, J P Bibring, R Arvidson, K Beisser, Peter D Bedini, J L Bishop, J Boldt, P J Cavender, T Choo, R. Todd Clancy
    Abstract:

    [1] The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is a hyperspectral imager on the Mars Reconnaissance Orbiter (MRO) spacecraft. CRISM consists of three subassemblies, a gimbaled Optical Sensor Unit (OSU), a Data Processing Unit (DPU), and the Gimbal Motor Electronics (GME). CRISM's objectives are (1) to map the entire surface using a subset of bands to characterize crustal mineralogy, (2) to map the mineralogy of key areas at high spectral and spatial resolution, and (3) to measure spatial and seasonal variations in the atmosphere. These objectives are addressed using three major types of observations. In multispectral mapping mode, with the OSU pointed at planet nadir, data are collected at a subset of 72 wavelengths covering key mineralogic absorptions and binned to pixel footprints of 100 or 200 m/pixel. Nearly the entire planet can be mapped in this fashion. In targeted mode the OSU is scanned to remove most along-track motion, and a region of interest is mapped at full spatial and spectral resolution (15–19 m/pixel, 362–3920 nm at 6.55 nm/channel). Ten additional abbreviated, spatially binned images are taken before and after the main image, providing an emission phase function (EPF) of the site for atmospheric study and correction of surface spectra for atmospheric effects. In atmospheric mode, only the EPF is acquired. Global grids of the resulting lower data volume observations are taken repeatedly throughout the Martian year to measure seasonal variations in atmospheric properties. Raw, calibrated, and map-projected data are delivered to the community with a spectral library to aid in interpretation.

  • crism compact Reconnaissance imaging spectrometer for mars on mro mars Reconnaissance orbiter
    Fourth International Asia-Pacific Environmental Remote Sensing Symposium 2004: Remote Sensing of the Atmosphere Ocean Environment and Space, 2004
    Co-Authors: S L Murchie, J P Bibring, R Arvidson, K Beisser, John D Boldt, Tech H Choo, Todd R Clancy, Peter D Bedini, J L Bishop, E H Darlington
    Abstract:

    CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) is a hyperspectral imager that will be launched on the MRO (Mars Reconnaissance Orbiter) spacecraft in August 2005. MRO’s objectives are to recover climate science originally to have been conducted on the Mars Climate Orbiter (MCO), to identify and characterize sites of possible aqueous activity to which future landed missions may be sent, and to characterize the composition, geology, and stratigraphy of Martian surface deposits. MRO will operate from a sun-synchronous, near-circular (255x320 km altitude), near-polar orbit with a mean local solar time of 3 PM. CRISM’s spectral range spans the ultraviolet (UV) to the mid-wave infrared (MWIR), 383 nm to 3960 nm. The instrument utilizes a Ritchey-Chretien telescope with a 2.12° field-of-view (FOV) to focus light on the entrance slit of a dual spectrometer. Within the spectrometer, light is split by a dichroic into VNIR (visible-near-infrared, 383-1071 nm) and IR (infrared, 988-3960 nm) beams. Each beam is directed into a separate modified Offner spectrometer that focuses a spectrally dispersed image of the slit onto a two dimensional focal plane (FP). The IR FP is a 640 x 480 HgCdTe area array; the VNIR FP is a 640 x 480 silicon photodiode area array. The spectral image is contiguously sampled with a 6.6 nm spectral spacing and an instantaneous field of view of 61.5 μradians. The Optical Sensor Unit (OSU) can be gimbaled to take out along-track smear, allowing long integration times that afford high signal-to-noise ratio (SNR) at high spectral and spatial resolution. The scan motor and encoder are controlled by a separately housed Gimbal Motor Electronics (GME) unit. A Data Processing Unit (DPU) provides power, command and control, and data editing and compression. CRISM acquires three major types of observations of the Martian surface and atmosphere. In Multispectral Mapping Mode, with the gimbal pointed at planet nadir, data are collected at frame rates of 15 or 30 Hz. A commandable subset of wavelengths is saved by the DPU and binned 5:1 or 10:1 cross-track. The combination of frame rates and binning yields pixel footprints of 100 or 200 m. In this mode, nearly the entire planet can be mapped at wavelengths of key mineralogic absorption bands to select regions of interest. In Targeted Mode, the gimbal is scanned over ±60° from nadir to remove most along-track motion, and a region of interest is mapped at full spatial and spectral resolution. Ten additional abbreviated, pixel-binned observations are taken before and after the main hyperspectral image at longer atmospheric path lengths, providing an emission phase function (EPF) of the site for atmospheric study and correction of surface spectra for atmospheric effects. In Atmospheric Mode, the central observation is eliminated and only the EPF is acquired. Global grids of the resulting lower data volume observation are taken repeatedly throughout the Martian year to measure seasonal variations in atmospheric properties.

  • crism compact Reconnaissance imaging spectrometer for mars on the mars Reconnaissance orbiter
    Mars Infrared Spectroscopy: From Theory and the Laboratory To Field Observations, 2002
    Co-Authors: S Murchie, R. Todd Clancy, J P Bibring, R Arvidson, O Barnouinjha, K Beisser, J Bishop, John D Boldt, Tech H Choo, E H Darlington
    Abstract:

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on the Mars Reconnaissance Orbiter (MRO) will conduct a comprehensive series of investigations of the Martian surface and atmosphere. The investigations will be accomplished using an instrument design that provides high spatial and spectral resolutions, extended wavelength range, and ability to gimbal through a range of orientations. Baseline investigations include a near-global survey to find high science priority sites, full-resolution measurement of thousands of such sites, and tracking of seasonal variations in atmospheric and surface properties.

K Beisser - One of the best experts on this subject based on the ideXlab platform.

  • compact Reconnaissance imaging spectrometer for mars crism on mars Reconnaissance orbiter mro
    Journal of Geophysical Research, 2007
    Co-Authors: S L Murchie, J P Bibring, R Arvidson, K Beisser, Peter D Bedini, J L Bishop, J Boldt, P J Cavender, T Choo, R. Todd Clancy
    Abstract:

    [1] The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is a hyperspectral imager on the Mars Reconnaissance Orbiter (MRO) spacecraft. CRISM consists of three subassemblies, a gimbaled Optical Sensor Unit (OSU), a Data Processing Unit (DPU), and the Gimbal Motor Electronics (GME). CRISM's objectives are (1) to map the entire surface using a subset of bands to characterize crustal mineralogy, (2) to map the mineralogy of key areas at high spectral and spatial resolution, and (3) to measure spatial and seasonal variations in the atmosphere. These objectives are addressed using three major types of observations. In multispectral mapping mode, with the OSU pointed at planet nadir, data are collected at a subset of 72 wavelengths covering key mineralogic absorptions and binned to pixel footprints of 100 or 200 m/pixel. Nearly the entire planet can be mapped in this fashion. In targeted mode the OSU is scanned to remove most along-track motion, and a region of interest is mapped at full spatial and spectral resolution (15–19 m/pixel, 362–3920 nm at 6.55 nm/channel). Ten additional abbreviated, spatially binned images are taken before and after the main image, providing an emission phase function (EPF) of the site for atmospheric study and correction of surface spectra for atmospheric effects. In atmospheric mode, only the EPF is acquired. Global grids of the resulting lower data volume observations are taken repeatedly throughout the Martian year to measure seasonal variations in atmospheric properties. Raw, calibrated, and map-projected data are delivered to the community with a spectral library to aid in interpretation.

  • crism compact Reconnaissance imaging spectrometer for mars on mro mars Reconnaissance orbiter
    Fourth International Asia-Pacific Environmental Remote Sensing Symposium 2004: Remote Sensing of the Atmosphere Ocean Environment and Space, 2004
    Co-Authors: S L Murchie, J P Bibring, R Arvidson, K Beisser, John D Boldt, Tech H Choo, Todd R Clancy, Peter D Bedini, J L Bishop, E H Darlington
    Abstract:

    CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) is a hyperspectral imager that will be launched on the MRO (Mars Reconnaissance Orbiter) spacecraft in August 2005. MRO’s objectives are to recover climate science originally to have been conducted on the Mars Climate Orbiter (MCO), to identify and characterize sites of possible aqueous activity to which future landed missions may be sent, and to characterize the composition, geology, and stratigraphy of Martian surface deposits. MRO will operate from a sun-synchronous, near-circular (255x320 km altitude), near-polar orbit with a mean local solar time of 3 PM. CRISM’s spectral range spans the ultraviolet (UV) to the mid-wave infrared (MWIR), 383 nm to 3960 nm. The instrument utilizes a Ritchey-Chretien telescope with a 2.12° field-of-view (FOV) to focus light on the entrance slit of a dual spectrometer. Within the spectrometer, light is split by a dichroic into VNIR (visible-near-infrared, 383-1071 nm) and IR (infrared, 988-3960 nm) beams. Each beam is directed into a separate modified Offner spectrometer that focuses a spectrally dispersed image of the slit onto a two dimensional focal plane (FP). The IR FP is a 640 x 480 HgCdTe area array; the VNIR FP is a 640 x 480 silicon photodiode area array. The spectral image is contiguously sampled with a 6.6 nm spectral spacing and an instantaneous field of view of 61.5 μradians. The Optical Sensor Unit (OSU) can be gimbaled to take out along-track smear, allowing long integration times that afford high signal-to-noise ratio (SNR) at high spectral and spatial resolution. The scan motor and encoder are controlled by a separately housed Gimbal Motor Electronics (GME) unit. A Data Processing Unit (DPU) provides power, command and control, and data editing and compression. CRISM acquires three major types of observations of the Martian surface and atmosphere. In Multispectral Mapping Mode, with the gimbal pointed at planet nadir, data are collected at frame rates of 15 or 30 Hz. A commandable subset of wavelengths is saved by the DPU and binned 5:1 or 10:1 cross-track. The combination of frame rates and binning yields pixel footprints of 100 or 200 m. In this mode, nearly the entire planet can be mapped at wavelengths of key mineralogic absorption bands to select regions of interest. In Targeted Mode, the gimbal is scanned over ±60° from nadir to remove most along-track motion, and a region of interest is mapped at full spatial and spectral resolution. Ten additional abbreviated, pixel-binned observations are taken before and after the main hyperspectral image at longer atmospheric path lengths, providing an emission phase function (EPF) of the site for atmospheric study and correction of surface spectra for atmospheric effects. In Atmospheric Mode, the central observation is eliminated and only the EPF is acquired. Global grids of the resulting lower data volume observation are taken repeatedly throughout the Martian year to measure seasonal variations in atmospheric properties.

  • crism compact Reconnaissance imaging spectrometer for mars on the mars Reconnaissance orbiter
    Mars Infrared Spectroscopy: From Theory and the Laboratory To Field Observations, 2002
    Co-Authors: S Murchie, R. Todd Clancy, J P Bibring, R Arvidson, O Barnouinjha, K Beisser, J Bishop, John D Boldt, Tech H Choo, E H Darlington
    Abstract:

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on the Mars Reconnaissance Orbiter (MRO) will conduct a comprehensive series of investigations of the Martian surface and atmosphere. The investigations will be accomplished using an instrument design that provides high spatial and spectral resolutions, extended wavelength range, and ability to gimbal through a range of orientations. Baseline investigations include a near-global survey to find high science priority sites, full-resolution measurement of thousands of such sites, and tracking of seasonal variations in atmospheric and surface properties.