Relativistic Velocity

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 25050 Experts worldwide ranked by ideXlab platform

Junji Jia - One of the best experts on this subject based on the ideXlab platform.

  • the finite distance gravitational deflection of massive particles in stationary spacetime a jacobi metric approach
    European Physical Journal C, 2020
    Co-Authors: Junji Jia
    Abstract:

    In this paper, we study the weak gravitational deflection of Relativistic massive particles for a receiver and source at finite distance from the lens in stationary, axisymmetric and asymptotically flat spacetimes. For this purpose, we extend the generalized optical metric method to the generalized Jacobi metric method by using the Jacobi–Maupertuis Randers–Finsler metric. More specifically, we apply the Gauss–Bonnet theorem to the generalized Jacobi metric space and then obtain an expression for calculating the deflection angle, which is related to Gaussian curvature of generalized optical metric and geodesic curvature of particles orbit. In particular, the finite-distance correction to the deflection angle of signal with general Velocity in the the Kerr black hole and Teo wormhole spacetimes are considered. Our results cover the previous work of the deflection angle of light, as well as the deflection angle of massive particles in the limit for the receiver and source at infinite distance from the lens object. In Kerr black hole spacetime, we compared the effects due to the black hole spin, the finite-distance of source or receiver, and the Relativistic Velocity in microlensings and lensing by galaxies. It is found in these cases, the effect of black hole spin is usually a few orders larger than that of the finite-distance and Relativistic Velocity, while the relative size of the latter two could vary according to the particle Velocity, source or observer distance and other lensing parameters.

  • the finite distance gravitational deflection of massive particles in stationary spacetime a jacobi metric approach
    arXiv: General Relativity and Quantum Cosmology, 2019
    Co-Authors: Junji Jia
    Abstract:

    In this paper, we study the weak gravitational deflection of Relativistic massive particles for a receiver and source at finite distance from the lens in stationary, axisymmetric and asymptotically flat spacetimes. For this purpose, we extend the generalized optical metric method to the generalized Jacobi metric method by using the Jacobi-Maupertuis Randers-Finsler metric. More specifically,we apply the Gauss-Bonnet theorem to the generalized Jacobi metric space and then obtain an expression for calculating the deflection angle, which is related to Gaussian curvature of generalized optical metric and geodesic curvature of particles orbit. In particular, the finite-distance correction to the deflection angle of signal with general Velocity in the the Kerr black hole and Teo wormhole spacetimes are considered. Our results cover the previous work of the deflection angle of light, as well as the deflection angle of massive particles in the limit for the receive and source at infinite distance from the lens object. In Kerr black hole spacetime, we compared the effects due to the black hole spin, the finite-distance of source or receiver, and the Relativistic Velocity in microlensings and lensing by galaxies. It is found in these cases, the effect of BH spin is usually a few orders larger than that of the finite-distance and Relativistic Velocity, while the relative size of the latter two could vary according to the particle Velocity, source or observer distance and other lensing parameters.

Mohamed Ould El Hadj - One of the best experts on this subject based on the ideXlab platform.

  • electromagnetic radiation generated by a charged particle falling radially into a schwarzschild black hole a complex angular momentum description
    Physical Review D, 2020
    Co-Authors: Antoine Folacci, Mohamed Ould El Hadj
    Abstract:

    By using complex angular momentum techniques, we study the electromagnetic radiation generated by a charged particle falling radially from infinity into a Schwarzschild black hole. We consider both the case of a particle initially at rest and that of a particle projected with a Relativistic Velocity and we construct complex angular momentum representations and Regge pole approximations of the partial wave expansions defining the Maxwell scalar $\phi_2$ and the energy spectrum $dE/d\omega$ observed at spatial infinity. We show, in particular, that Regge pole approximations involving only one Regge pole provide effective ressumations of these partial wave expansions permitting us (i) to reproduce with very good agreement the black hole ringdown without requiring a starting time, (ii) to describe with rather good agreement the tail of the signal and sometimes the pre-ringdown phase and (iii) to explain the oscillations in the electromagnetic energy spectrum radiated by the charged particle. The present work as well as a previous one concerning the gravitational radiation generated by a massive particle falling into a Schwarzschild black hole [A. Folacci and M. Ould El Hadj, Phys, Rev, D$\textbf{98}$, 064052, (2018), arXiv:1807.09056 [gr-qc]] highlight the benefits of studying radiation from black holes in the complex angular momentum framework (they obviously appear when the approximations obtained involve a small number of Regge poles and have a clear physical interpretation) but also to exhibit the limits of this approach (this is the case when it is necessary to take into account background integral contributions).

  • Electromagnetic radiation generated by a charged particle falling radially into a Schwarzschild black hole: A complex angular momentum description
    'American Physical Society (APS)', 2020
    Co-Authors: Folacci Antoine, Mohamed Ould El Hadj
    Abstract:

    By using complex angular momentum techniques, we study the electromagnetic radiation generated by a charged particle falling radially from infinity into a Schwarzschild black hole. We consider both the case of a particle initially at rest and that of a particle projected with a Relativistic Velocity and we construct complex angular momentum representations and Regge pole approximations of the partial wave expansions defining the Maxwell scalar $\phi_2$ and the energy spectrum $dE/d\omega$ observed at spatial infinity. We show, in particular, that Regge pole approximations involving only one Regge pole provide effective resummations of these partial wave expansions permitting us (i) to reproduce with very good agreement the black hole ringdown without requiring a starting time, (ii) to describe with rather good agreement the tail of the signal and sometimes the pre-ringdown phase, and (iii) to explain the oscillations in the electromagnetic energy spectrum radiated by the charged particle. The present work as well as a previous one concerning the gravitational radiation generated by a massive particle falling into a Schwarzschild black hole [A. Folacci and M. Ould El Hadj, Phys. Rev. D$\textbf{98}$, 064052 (2018), arXiv:1807.09056 [gr-qc]] highlight the benefits of studying radiation from black holes in the complex angular momentum framework (they obviously appear when the approximations obtained involve a small number of Regge poles and have a clear physical interpretation) but also to exhibit the limits of this approach (this is the case when it is necessary to take into account background integral contributions).Comment: arXiv admin note: substantial text overlap with arXiv:1807.09056, v2 : A few typos corrected and minor changes in the text to match the published versio

V I Ritus - One of the best experts on this subject based on the ideXlab platform.

  • permutation asymmetry of the Relativistic Velocity addition law and non euclidean geometry
    Physics-Uspekhi, 2008
    Co-Authors: V I Ritus
    Abstract:

    The asymmetry of the Relativistic addition law for noncollinear velocities under the Velocity permutation leads to two modified triangles on a Euclidean plane depicting the addition of unpermuted and permuted velocities and the appearance of a nonzero angle ω between two resulting velocities. A particle spin rotates through the same angle ω under a Lorentz boost with a Velocity noncollinear to the particle Velocity. Three mutually connected three-parameter representations of the angle ω, obtained by the author earlier, express the three-parameter symmetry of the sides and angles of two Euclidean triangles identical to the sine and cosine theorems for the sides and angles of a single geodesic triangle on the surface of a pseudosphere. Namely, all three representations of the angle ω, after a transformation of one of them, coincide with the representations of the area of a pseudospherical triangle expressed in terms of any two of its sides and the angle between them. The angle ω is also symmetrically expressed in terms of three angles or three sides of a geodesic triangle, and therefore it is an invariant of the group of triangle motions over the pseudo-sphere surface, the group that includes the Lorentz group. Although the pseudospheres in Euclidean and pseudo-Euclidean spaces are locally isometric, only the latter is isometric to the entire Lobachevsky plane and forms a homogeneous isotropic curved 4-Velocity space in the flat Minkowski space. In this connection, Relativistic physical processes that may be related to the pseudosphere in Euclidean space are especially interesting.

  • on the difference between wigner s and moller s approaches to the description of thomas precession
    Physics-Uspekhi, 2007
    Co-Authors: V I Ritus
    Abstract:

    An account is given of the Wigner concept of particle spin and Velocity rotations and of the variation of the angle between them under Lorentz transformations with noncollinear velocities. It is shown that Moller's description of spin rotation can be reduced to the Wigner rotation, and Moller's formula for the angle of spin rotation in the curvilinear motion of a particle is corrected. The permutation asymmetry of the Relativistic Velocity addition law distinguishes the Wigner sequence of Lorentzian boosts by its applicability to the description of spin and Velocity rotations in curvilinear motion.

Antoine Folacci - One of the best experts on this subject based on the ideXlab platform.

  • electromagnetic radiation generated by a charged particle falling radially into a schwarzschild black hole a complex angular momentum description
    Physical Review D, 2020
    Co-Authors: Antoine Folacci, Mohamed Ould El Hadj
    Abstract:

    By using complex angular momentum techniques, we study the electromagnetic radiation generated by a charged particle falling radially from infinity into a Schwarzschild black hole. We consider both the case of a particle initially at rest and that of a particle projected with a Relativistic Velocity and we construct complex angular momentum representations and Regge pole approximations of the partial wave expansions defining the Maxwell scalar $\phi_2$ and the energy spectrum $dE/d\omega$ observed at spatial infinity. We show, in particular, that Regge pole approximations involving only one Regge pole provide effective ressumations of these partial wave expansions permitting us (i) to reproduce with very good agreement the black hole ringdown without requiring a starting time, (ii) to describe with rather good agreement the tail of the signal and sometimes the pre-ringdown phase and (iii) to explain the oscillations in the electromagnetic energy spectrum radiated by the charged particle. The present work as well as a previous one concerning the gravitational radiation generated by a massive particle falling into a Schwarzschild black hole [A. Folacci and M. Ould El Hadj, Phys, Rev, D$\textbf{98}$, 064052, (2018), arXiv:1807.09056 [gr-qc]] highlight the benefits of studying radiation from black holes in the complex angular momentum framework (they obviously appear when the approximations obtained involve a small number of Regge poles and have a clear physical interpretation) but also to exhibit the limits of this approach (this is the case when it is necessary to take into account background integral contributions).

Röder Marko - One of the best experts on this subject based on the ideXlab platform.

  • Measurement of the Coulomb dissociation cross sections of the neutron rich nitrogen isotopes 20,21N
    2014
    Co-Authors: Röder Marko
    Abstract:

    Many neutron rich nuclei are involved in the astrophysical r-process (rapid neutron capture process). The r-process forms an important path for heavy element nucleosynthesis and runs along the neutron drip line. Astrophysicists suggested core-collapse supernovae within a neutrino-driven wind scenario where the neutrino wind dissociates all previously formed elements into protons, neutrons and α particles, to be a possible astrophysical scenario for the r-process. Furthermore, reaction network calculations reported a high impact of light neutron rich nuclei to the r-process abundance. Reactions on these exotic nuclei can only be studied with radioactive ion beams as their half lifes, in the order of a few hundred milliseconds (T1/2,19N=330ms), are too low to fabricate target material out of them. Two examples of reactions along the path of the r-process are the 19N(n,γ)20N and the 20N(n, γ)21N reactions. Using 20N (resp. 21N) as a beam, these reactions were studied at the GSI Fragment Separator (FRS) in time-reversed conditions via Coulomb dissociation in the S393 experiment exploiting the virtual gamma field of a lead target. The experiment was performed at the LAND/R3B setup (Large Area Neutron Detector, Reactions with Relativistic Radioactive Beams) in a kinematically complete measurement, i.e., detecting all particles leaving the nuclear reaction. The neutrons flying at Relativistic Velocity were observed by the LAND detector, the calibration of which plays a crucial role for the present reaction. The Smiley effect, meaning that the measured energy of impinging particles in long scintillators is not independent of the hit position of the particle, has been investigated. It will be shown that reflections of the light traveling through the scintillator and the resulting longer path length of the light when not emitted directly towards the ends of the bar were identified to cause the Smiley effect. Gamma spectra in coincidence with outgoing 19N (resp. 20N) were generated. These fit well to recent publications and were utilized to separate transitions of the projectile nucleus into the ground state or first excited state of the ejectile nucleus. The Coulomb dissociation cross section was calculated for the total reaction, transitions into the ground state and the first excited state of the ejectile nucleus. Furthermore, excitation energy spectra were derived for both reactions separately for ground state transitions and for the dominating transitions into the first excited state. In order to facilitate future experiments on exotic nuclei, two detector solutions for the NeuLAND detector (the successor of LAND) were investigated. Utilizing minimum ionizing electrons of 30MeV at the ELBE facility, time resolutions and detection efficiencies were studied for an MRPC (Multi-gap Resistive Plate Chamber) based neutron detector with passive iron converters, on the one hand, and a pure scintillator based neutron ToF detector on the other hand. The ELBE data show good time resolutions (σt,electron < 120 ps) and detection efficiencies (ǫelectron > 90%) for both systems. Small MRPC prototypes were irradiated with 175MeV quasi-monochromatic neutrons at The Svedberg Laboratory (TSL) in Uppsala measuring efficiencies of ǫMRPC,neutron = 1.0%. It will be shown that MRPCs with passive steel converters may be included as neutron detectors in experiments where a lower multi-neutron capability than the one needed for NeuLAND is sufficient.Viele neutronenreiche Kerne sind im schnellen Neutroneneinfangprozess (r-Prozess, engl. für rapid) involviert. Der r-Prozess bildet einen wichtigen Pfad für die Nukleosynthese schwerer Elemente und verläuft entlang der Neutronen-Dripline. Astrophysiker schlugen Kernkollaps-Supernovae innerhalb eines neutrinogetriebenen Windes als mögliches astrophysikalisches Szenario für den r-Prozess vor. Dabei werden alle zuvor gebildeten Elemente in Protonen, Neutronen und Alphapartikel dissoziiert. Außerdem ist von Berechnungen mit Reaktionsnetzwerken bekannt, dass leichte neutronenreiche Kerne einen hohen Einfluss auf die Elementverteilung des r-Prozesses haben. Reaktionen dieser exotischen Kerne können nur mit radioaktiven Ionenstrahlen studiert werden, da ihre Halbwertszeiten im Bereich von wenigen hundert Millisekunden (T1/2,19N=330ms) zu gering sind, um Probenmaterial daraus herzustellen. Zwei Beispiele solcher Reaktionen, die auf dem Pfad des r-Prozesses liegen, sind die 19N(n,γ)20N und die 20N(n,γ)21N Reaktionen. Unter Verwendung von 20N (bzw. 21N) als Strahl wurden diese Reaktionen am Fragment Separator (FRS) der GSI unter zeitumgekehrten Bedingungen mittels Coulomb-Aufbruch gemessen, indem das virtuelle Photonenfeld einer Bleiprobe ausgenutzt wurde. Das Experiment wurde am LAND/R3B Aufbau (Large Area Neutron Detector, Reactions with Relativistic Radioactive Beams) in einer kinematisch vollständigen Messung durchgeführt, d.h. alle ausgehenden Reaktionsprodukte wurden detektiert. Die relativistischen Neutronen wurden mit dem LAND-Detektor untersucht. Dessen Kalibration spielt eine wichtige Rolle für die hier analysierten Reaktionen. Dabei wurde der Smiley-Effekt studiert, welcher beinhaltet, dass die gemessene Energie von einfallenden Teilchen mittels langen Szintillatorstreifen nicht unabhängig von der Position ist, an der die Teilchen auf den Detektor treffen. Es wird gezeigt, dass Reflexionen des Lichtes beim Durchgang durch den Szintillator und die größere Weglänge, die das Licht zurücklegen muss, wenn es nicht direkt in Richtung der Enden des Szintillators emittiert wird, den Smiley-Effekt verursachen. Gamma-Spektren in Koinzidenz mit ausgehenden 19N (bzw. 20N) wurden gewonnen und stimmen gut mit früheren Veröffentlichungen überein. Diese Spektren wurden dazu verwendet, die Übergänge des Projektilkerns in den Grundzustand und den ersten angeregten Zustand des Ejektilkerns zu identifizieren. Die Wirkungsquerschnitte des Coulombaufbruchs der Projektilkerne und die Anregungsenergiespektren beider Reaktionen wurden berechnet und separiert in Übergänge in den Grundzustand und die dominierenden Übergänge in den ersten angeregten Zustand. Um künftige Experimente an exotischen Kernen zu ermöglichen, wurden zusätzlich zwei Detektorkonzepte für NeuLAND (Nachfolger von LAND) untersucht. Mit minimal ionisierenden Elektronen mit Energien von 30MeV aus dem Elektronenbeschleuniger ELBE wurden die Zeitauflösungen und Detektionseffizienzen zum einen für einen MRPC (Multi-gap Resistive Plate Chamber) basierenden Neutronendetektor mit passiven Stahlkonverter und zum anderen für einen reinen szintillatorbasierenden Neutronendetektor studiert. Die ELBE-Daten zeigen gute Zeitauflösungen (σt,electron < 120ps) und Detektionseffizienzen (ǫelectron > 90%) für beide Systeme. Kleine MRPC-Prototypen wurden mit quasi-monochromatischen Neutronen mit einer Energie von 175MeV am TSL (The Svedberg Laboratory) in Uppsala bestrahlt. Dabei wurden Effizienzen von ǫMRPC,neutron = 1.0% gemessen. Es wird gezeigt, dass MRPCs mit passiven Stahlkonvertern als Neutronendetektoren bei Experimenten, bei denen eine geringere Multineutronenfähigkeit als für NeuLAND ausreichend ist, eingesetzt werden können

  • Measurement of the Coulomb dissociation cross sections of the neutron rich nitrogen isotopes 20,21N
    2014
    Co-Authors: Röder Marko
    Abstract:

    Many neutron rich nuclei are involved in the astrophysical r-process (rapid neutron capture process). The r-process forms an important path for heavy element nucleosynthesis and runs along the neutron drip line. Astrophysicists suggested core-collapse supernovae within a neutrino-driven wind scenario where the neutrino wind dissociates all previously formed elements into protons, neutrons and α particles, to be a possible astrophysical scenario for the r-process. Furthermore, reaction network calculations reported a high impact of light neutron rich nuclei to the r-process abundance. Reactions on these exotic nuclei can only be studied with radioactive ion beams as their half lifes, in the order of a few hundred milliseconds (T1/2,19N=330ms), are too low to fabricate target material out of them. Two examples of reactions along the path of the r-process are the 19N(n,γ)20N and the 20N(n, γ)21N reactions. Using 20N (resp. 21N) as a beam, these reactions were studied at the GSI Fragment Separator (FRS) in time-reversed conditions via Coulomb dissociation in the S393 experiment exploiting the virtual gamma field of a lead target. The experiment was performed at the LAND/R3B setup (Large Area Neutron Detector, Reactions with Relativistic Radioactive Beams) in a kinematically complete measurement, i.e., detecting all particles leaving the nuclear reaction. The neutrons flying at Relativistic Velocity were observed by the LAND detector, the calibration of which plays a crucial role for the present reaction. The Smiley effect, meaning that the measured energy of impinging particles in long scintillators is not independent of the hit position of the particle, has been investigated. It will be shown that reflections of the light traveling through the scintillator and the resulting longer path length of the light when not emitted directly towards the ends of the bar were identified to cause the Smiley effect. Gamma spectra in coincidence with outgoing 19N (resp. 20N) were generated. These fit well to recent publications and were utilized to separate transitions of the projectile nucleus into the ground state or first excited state of the ejectile nucleus. The Coulomb dissociation cross section was calculated for the total reaction, transitions into the ground state and the first excited state of the ejectile nucleus. Furthermore, excitation energy spectra were derived for both reactions separately for ground state transitions and for the dominating transitions into the first excited state. In order to facilitate future experiments on exotic nuclei, two detector solutions for the NeuLAND detector (the successor of LAND) were investigated. Utilizing minimum ionizing electrons of 30MeV at the ELBE facility, time resolutions and detection efficiencies were studied for an MRPC (Multi-gap Resistive Plate Chamber) based neutron detector with passive iron converters, on the one hand, and a pure scintillator based neutron ToF detector on the other hand. The ELBE data show good time resolutions (σt,electron 90%) for both systems. Small MRPC prototypes were irradiated with 175MeV quasi-monochromatic neutrons at The Svedberg Laboratory (TSL) in Uppsala measuring efficiencies of ǫMRPC,neutron = 1.0%. It will be shown that MRPCs with passive steel converters may be included as neutron detectors in experiments where a lower multi-neutron capability than the one needed for NeuLAND is sufficient.Viele neutronenreiche Kerne sind im schnellen Neutroneneinfangprozess (r-Prozess, engl. für rapid) involviert. Der r-Prozess bildet einen wichtigen Pfad für die Nukleosynthese schwerer Elemente und verläuft entlang der Neutronen-Dripline. Astrophysiker schlugen Kernkollaps-Supernovae innerhalb eines neutrinogetriebenen Windes als mögliches astrophysikalisches Szenario für den r-Prozess vor. Dabei werden alle zuvor gebildeten Elemente in Protonen, Neutronen und Alphapartikel dissoziiert. Außerdem ist von Berechnungen mit Reaktionsnetzwerken bekannt, dass leichte neutronenreiche Kerne einen hohen Einfluss auf die Elementverteilung des r-Prozesses haben. Reaktionen dieser exotischen Kerne können nur mit radioaktiven Ionenstrahlen studiert werden, da ihre Halbwertszeiten im Bereich von wenigen hundert Millisekunden (T1/2,19N=330ms) zu gering sind, um Probenmaterial daraus herzustellen. Zwei Beispiele solcher Reaktionen, die auf dem Pfad des r-Prozesses liegen, sind die 19N(n,γ)20N und die 20N(n,γ)21N Reaktionen. Unter Verwendung von 20N (bzw. 21N) als Strahl wurden diese Reaktionen am Fragment Separator (FRS) der GSI unter zeitumgekehrten Bedingungen mittels Coulomb-Aufbruch gemessen, indem das virtuelle Photonenfeld einer Bleiprobe ausgenutzt wurde. Das Experiment wurde am LAND/R3B Aufbau (Large Area Neutron Detector, Reactions with Relativistic Radioactive Beams) in einer kinematisch vollständigen Messung durchgeführt, d.h. alle ausgehenden Reaktionsprodukte wurden detektiert. Die relativistischen Neutronen wurden mit dem LAND-Detektor untersucht. Dessen Kalibration spielt eine wichtige Rolle für die hier analysierten Reaktionen. Dabei wurde der Smiley-Effekt studiert, welcher beinhaltet, dass die gemessene Energie von einfallenden Teilchen mittels langen Szintillatorstreifen nicht unabhängig von der Position ist, an der die Teilchen auf den Detektor treffen. Es wird gezeigt, dass Reflexionen des Lichtes beim Durchgang durch den Szintillator und die größere Weglänge, die das Licht zurücklegen muss, wenn es nicht direkt in Richtung der Enden des Szintillators emittiert wird, den Smiley-Effekt verursachen. Gamma-Spektren in Koinzidenz mit ausgehenden 19N (bzw. 20N) wurden gewonnen und stimmen gut mit früheren Veröffentlichungen überein. Diese Spektren wurden dazu verwendet, die Übergänge des Projektilkerns in den Grundzustand und den ersten angeregten Zustand des Ejektilkerns zu identifizieren. Die Wirkungsquerschnitte des Coulombaufbruchs der Projektilkerne und die Anregungsenergiespektren beider Reaktionen wurden berechnet und separiert in Übergänge in den Grundzustand und die dominierenden Übergänge in den ersten angeregten Zustand. Um künftige Experimente an exotischen Kernen zu ermöglichen, wurden zusätzlich zwei Detektorkonzepte für NeuLAND (Nachfolger von LAND) untersucht. Mit minimal ionisierenden Elektronen mit Energien von 30MeV aus dem Elektronenbeschleuniger ELBE wurden die Zeitauflösungen und Detektionseffizienzen zum einen für einen MRPC (Multi-gap Resistive Plate Chamber) basierenden Neutronendetektor mit passiven Stahlkonverter und zum anderen für einen reinen szintillatorbasierenden Neutronendetektor studiert. Die ELBE-Daten zeigen gute Zeitauflösungen (σt,electron 90%) für beide Systeme. Kleine MRPC-Prototypen wurden mit quasi-monochromatischen Neutronen mit einer Energie von 175MeV am TSL (The Svedberg Laboratory) in Uppsala bestrahlt. Dabei wurden Effizienzen von ǫMRPC,neutron = 1.0% gemessen. Es wird gezeigt, dass MRPCs mit passiven Stahlkonvertern als Neutronendetektoren bei Experimenten, bei denen eine geringere Multineutronenfähigkeit als für NeuLAND ausreichend ist, eingesetzt werden können