Robinson-Gabriel Synthesis

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 15 Experts worldwide ranked by ideXlab platform

Jetze J. Tepe - One of the best experts on this subject based on the ideXlab platform.

Manasi Keni - One of the best experts on this subject based on the ideXlab platform.

Jie Jack Li - One of the best experts on this subject based on the ideXlab platform.

  • Name Reactions: A Collection of Detailed Reaction Mechanisms
    2002
    Co-Authors: Jie Jack Li
    Abstract:

    Alder ene reaction -- Aldol condensation -- Algar-Flynn-Oyamada Reaction -- Allan-Robinson reaction -- Appel reaction -- Arndt-Eistert homologation -- Baeyer-Villiger oxidation -- Baker-Venkataraman rearrangement -- Bamberger rearrangement -- Bamford-Stevens reaction -- Barbier coupling reaction -- Bargellini reaction -- Bartoli indole Synthesis -- Barton radical decarboxylation -- Barton-McCombie deoxygenation -- Barton nitrite photolysis -- Barton-Zard reaction -- Batcho-Leimgruber indole Synthesis -- Baylis-Hillman reaction -- Beckmann rearrangement -- Beirut reaction -- Benzilic acid rearrangement -- Benzoin condensation -- Bergman cyclization -- Biginelli pyrimidone Synthesis -- Birch reduction -- Bischler-Mohlau indole Synthesis -- Bischler-Napieralski reaction -- Blaise reaction -- Blanc chloromethylation -- Blum aziridine Synthesis -- Boekelheide reaction -- Boger pyridine Synthesis -- Borch reductive amination -- Borsche-Drechsel cyclization -- Boulton-Katritzky rearrangement -- Bouveault aldehyde Synthesis -- Bouveault-Blanc reduction -- Boyland-Sims oxidation -- Bradsher reaction -- Brook rearrangement -- Brown hydroboration -- Bucherer carbazole Synthesis -- Bucherer reaction -- Bucherer-Bergs reaction -- Buchner-Curtius-Schlotterbeck reaction -- Buchner method of ring expansion -- Buchwald-Hartwig C-N and C-O bond formation reactions -- Burgess dehydrating reagent -- Cadiot-Chodkiewicz coupling -- Camps quinolinol Synthesis -- Cannizzaro disproportionation -- Carroll rearrangement -- Castro-Stephens coupling -- Chan alkyne reduction -- Chan-Lam coupling reaction -- Chapman rearrangement -- Chichibabin pyridine Synthesis -- Chugaev elimination -- Ciamician-Dennsted rearrangement -- Claisen condensation -- Claisen isoxazole Synthesis -- Claisen rearrangements -- Clemmensen reduction -- Combes quinoline Synthesis -- Conrad-Limpach reaction -- Cope elimination reaction -- Cope rearrangement -- Corey-Bakshi-Shibata (CBS) reduction -- Corey-Chaykovsky reaction -- Corey-Fuchs reaction -- Corey-Kim oxidation -- Corey-Nicolaou macrolactonization -- Corey-Seebach reaction -- Corey-Winter olefin Synthesis -- Criegee glycol cleavage -- Criegee mechanism of ozonolysis -- Curtius rearrangement -- Dakin oxidation -- Dakin-West reaction -- Danheiser annulation -- Darzens glycidic ester condensation -- Davis chiral oxaziridine reagents -- Delepine amine Synthesis -- de Mayo reaction -- Demjanov rearrangement -- Dess-Martin periodinane oxidation -- Dieckmann condensation -- Diels-Alder reaction -- Dienone-phenol rearrangement -- Di-?-methane rearrangement -- Doebner quinoline Synthesis -- Dotz reaction -- Dowd-Beckwith ring expansion -- Erlenmeyer-Plochl azlactone Synthesis -- Eschenmoser-Tanabe fragmentation -- Eschweiler-Clarke reductive alkylation of amines -- Evans aldol reaction -- Favorskii rearrangement and quasi-Favorskii rearrangement -- Feist-Benary furan Synthesis -- Ferrier carbocyclization -- Ferrier glycal allylic rearrangement -- Fiesselmann thiophene Synthesis -- Fischer indole Synthesis -- Fischer oxazole Synthesis -- Fleming-Kumada oxidation -- Friedel-Crafts reaction -- Friedlander quinoline Synthesis -- Fries rearrangement -- Fukuyama amine Synthesis -- Fukuyama reduction -- Gabriel Synthesis -- Gabriel-Colman rearrangement -- Gassman indole Synthesis -- Gattermann-Koch reaction -- Gewald aminothiophene Synthesis -- Glaser coupling -- Gomberg-Bachmann reaction -- Gould-Jacobs reaction -- Grignard reaction -- Grob fragmentation -- Guareschi-Thorpe condensation -- Hajos-Wiechert reaction -- Haller-Bauer reaction -- Hantzsch dihydropyridine Synthesis -- Hantzsch pyrrole Synthesis -- Heck reaction -- Hegedus indole Synthesis -- Hell-Volhard-Zelinsky reaction -- Henry nitroaldol reaction -- Hinsberg Synthesis of thiophene derivatives -- Hiyama cross-coupling reaction -- Hofmann rearrangement -- Hofmann-Loffler-Freytag reaction -- Horner-Wadsworth-Emmons reaction -- Houben-Hoesch reaction -- Hunsdiecker-Borodin reaction -- Hurd-Mori 1,2,3-thiadiazole Synthesis -- Jacobsen-Katsuki epoxidation -- Japp-Klingemann hydrazone Synthesis -- Jones oxidation -- Julia-Kocienski olefination -- Julia-Lythgoe olefination -- Kahne-Crich glycosidation -- Keck macrolactonization -- Knoevenagel condensation -- Knorr pyrazole Synthesis -- Koch-Haaf carbonylation -- Koenig-Knorr glycosidation -- Kolbe-Schmitt reaction -- Kostanecki reaction -- Krohnke pyridine Synthesis -- Kumada cross-coupling reaction -- Lawesson’s reagent -- Leuckart-Wallach reaction -- Lossen rearrangement -- McFadyen-Stevens reduction -- McMurry coupling -- MacMillan catalyst -- Mannich reaction -- Marshall boronate fragmentation -- Martin’s sulfurane dehydrating reagent -- Masamune-Roush conditions -- Meerwein-Ponndorf-Verley reduction -- Meisenheimer complex -- [1,2]-Meisenheimer rearrangement -- [2,3]-Meisenheimer rearrangement -- Meth-Cohn quinoline Synthesis -- Meyers oxazoline method -- Meyer-Schuster rearrangement -- Michael addition -- Michaelis-Arbuzov phosphonate Synthesis -- Midland reduction -- Mislow-Evans rearrangement -- Mitsunobu reaction -- Miyaura borylation -- Moffatt oxidation -- Montgomery coupling -- Morgan-Walls reaction -- Mori-Ban indole Synthesis -- Mukaiyama aldol reaction -- Mukaiyama Michael addition -- Mukaiyama reagent -- Myers-Saito cyclization -- Nazarov cyclization -- Neber rearrangement -- Nef reaction -- Negishi cross-coupling reaction -- Nenitzescu indole Synthesis -- Nicholas reaction -- Nicolaou dehydrogenation -- Nicolaou hydroxy-dithioketal cyclization -- Nicolaou hydroxy-ketone reductive cyclic ether formation -- Nicolaou oxyselenation -- Noyori asymmetric hydrogenation -- Nozaki-Hiyama-Kishi reaction -- Oppenauer oxidation -- Overman rearrangement -- Paal thiophene Synthesis -- Paal-Knorr furan Synthesis -- Parham cyclization -- Passerini reaction -- Paterno-Buchi reaction -- Pauson-Khand cyclopentenone Synthesis -- Payne rearrangement -- Pechmann coumarin Synthesis -- Perkin reaction -- Petasis reaction -- Peterson olefination -- Pictet-Gams isoquinoline Synthesis -- Pictet-Spengler tetrahydroisoquinoline Synthesis -- Pinacol rearrangement -- Pinner reaction -- Polonovski reaction -- Polonovski-Potier reaction -- Pomeranz-Fritsch reaction -- Prevost trans-dihydroxylation -- Prins reaction -- Pschorr cyclization -- Pummerer rearrangement -- Ramberg-Backlund reaction -- Reformatsky reaction -- Regitz diazo Synthesis -- Reimer-Tiemann reaction -- Reissert aldehyde Synthesis -- Reissert indole Synthesis -- Ring-closing metathesis (RCM) -- Ritter reaction -- Robinson annulation -- Robinson-Gabriel Synthesis -- Robinson-Schopf reaction -- Rosenmund reduction -- Rubottom oxidation -- Rupe rearrangement -- Saegusa oxidation -- Sakurai allylation reaction -- Sandmeyer reaction -- Schiemann reaction -- Schmidt reaction -- Schmidt’s trichloroacetimidate glycosidation reaction -- Shapiro reaction -- Sharpless asymmetric amino hydroxylation -- Sharpless asymmetric epoxidation -- Sharpless asymmetric dihydroxylation -- Sharpless olefin Synthesis -- Simmons-Smith reaction -- Skraup quinoline Synthesis -- Smiles rearrangement -- Sommelet reaction -- Sommelet-Hauser rearrangement -- Sonogashira reaction -- Staudinger ketene cycloaddition -- Staudinger reduction -- Sternbach benzodiazepine Synthesis -- Stetter reaction -- Still-Gennari phosphonate reaction -- Stille coupling -- Stille-Kelly reaction -- Stobbe condensation -- Stork enamine reaction -- Strecker amino acid Synthesis -- Suzuki coupling -- Swern oxidation -- Takai iodoalkene Synthesis -- Tebbe olefination -- TEMPO-mediated oxidation -- Thorpe-Ziegler reaction -- Tsuji-Trost reaction -- Ugi reaction -- Ullmann reaction -- van Leusen oxazole Synthesis -- Vilsmeier-Haack reaction -- Vilsmeier mechanism for acid chloride formation -- Vinylcyclopropane-cyclopentene rearrangement -- von Braun reaction -- Wacker oxidation -- Wagner-Meerwein rearrangement -- Weiss-Cook reaction -- Wharton oxygen transposition reaction -- Willgerodt-Kindler reaction -- Wittig reaction -- [1,2]-Wittig rearrangement -- [2,3]-Wittig rearrangement -- Wohl-Ziegler reaction -- Wolff rearrangement -- Wolff-Kishner reduction -- Yamaguchi esterification -- Zincke reaction.

Eduard R. Felder - One of the best experts on this subject based on the ideXlab platform.

  • Trifluoroacetic anhydride-mediated solid-phase version of the Robinson-Gabriel Synthesis of oxazoles.
    Journal of combinatorial chemistry, 2005
    Co-Authors: Maurizio Pulici, And Francesca Quartieri, Eduard R. Felder
    Abstract:

    A traceless solid-phase Synthesis of oxazoles 4 via Robinson−Gabriel reaction of solid-supported α-acylamino ketones 2 has been achieved. The reaction requires that the cyclization precursor be linked to a benzhydrylic-type linker (compounds 2) and that trifluoroacetic anhydride be used as the cyclodehydrating agent. The solvent has a dramatic effect on the latter reaction, which goes to completion and follows a cyclative-type mechanism only when an ethereal solvent is used. Different synthetic routes have been investigated toward assembling compounds 2. The most straightforward one, which we have validated more extensively, comprises the reaction of Merrifield α-methoxyphenyl (MAMP) resin with an α-amino ketone to form compounds 1, which are, in turn, acylated. Other methodologies and strategies allowing for the Synthesis of compounds 1 that have been investigated include direct alkylation of Rink amide resin; reductive amination of the latter with α-keto aldehydes; reaction of MAMP resin with α-amino al...

Maurizio Pulici - One of the best experts on this subject based on the ideXlab platform.

  • Trifluoroacetic anhydride-mediated solid-phase version of the Robinson-Gabriel Synthesis of oxazoles.
    Journal of combinatorial chemistry, 2005
    Co-Authors: Maurizio Pulici, And Francesca Quartieri, Eduard R. Felder
    Abstract:

    A traceless solid-phase Synthesis of oxazoles 4 via Robinson−Gabriel reaction of solid-supported α-acylamino ketones 2 has been achieved. The reaction requires that the cyclization precursor be linked to a benzhydrylic-type linker (compounds 2) and that trifluoroacetic anhydride be used as the cyclodehydrating agent. The solvent has a dramatic effect on the latter reaction, which goes to completion and follows a cyclative-type mechanism only when an ethereal solvent is used. Different synthetic routes have been investigated toward assembling compounds 2. The most straightforward one, which we have validated more extensively, comprises the reaction of Merrifield α-methoxyphenyl (MAMP) resin with an α-amino ketone to form compounds 1, which are, in turn, acylated. Other methodologies and strategies allowing for the Synthesis of compounds 1 that have been investigated include direct alkylation of Rink amide resin; reductive amination of the latter with α-keto aldehydes; reaction of MAMP resin with α-amino al...