Rowland Circles

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 9 Experts worldwide ranked by ideXlab platform

B Johnson - One of the best experts on this subject based on the ideXlab platform.

  • a seven crystal johann type hard x ray spectrometer at the stanford synchrotron radiation lightsource
    Review of Scientific Instruments, 2013
    Co-Authors: Dimosthenis Sokaras, Dennis Nordlund, T C Weng, P Velikov, D Wenger, A Garachtchenko, M George, V Borzenets, Roberto Alonsomori, B Johnson
    Abstract:

    We present a multicrystal Johann-type hard x-ray spectrometer (∼5–18 keV) recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The instrument is set at the wiggler beamline 6-2 equipped with two liquid nitrogen cooled monochromators – Si(111) and Si(311) – as well as collimating and focusing optics. The spectrometer consists of seven spherically bent crystal analyzers placed on intersecting vertical Rowland Circles of 1 m of diameter. The spectrometer is scanned vertically capturing an extended backscattering Bragg angular range (88°–74°) while maintaining all crystals on the Rowland circle trace. The instrument operates in atmospheric pressure by means of a helium bag and when all the seven crystals are used (100 mm of projected diameter each), has a solid angle of about 0.45% of 4π sr. The typical resolving power is in the order of EΔE∼10000. The spectrometer's high detection efficiency combined with the beamline 6-2 characteristics permits routine studies of x-ray emission, high energy resolution fluorescence detected x-ray absorption and resonant inelastic x-ray scattering of very diluted samples as well as implementation of demanding in situ environments.

  • a high resolution and large solid angle x ray raman spectroscopy end station at the stanford synchrotron radiation lightsource
    Review of Scientific Instruments, 2012
    Co-Authors: Dimosthenis Sokaras, Dennis Nordlund, T C Weng, Alonso R Mori, P Velikov, D Wenger, A Garachtchenko, M George, V Borzenets, B Johnson
    Abstract:

    We present a new x-ray Raman spectroscopy end-station recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The end-station is located at wiggler beamline 6-2 equipped with two monochromators-Si(111) and Si(311) as well as collimating and focusing optics. It consists of two multi-crystal Johann type spectrometers arranged on intersecting Rowland Circles of 1 m diameter. The first one, positioned at the forward scattering angles (low-q), consists of 40 spherically bent and diced Si(110) crystals with 100 mm diameters providing about 1.9% of 4π sr solid angle of detection. When operated in the (440) order in combination with the Si (311) monochromator, an overall energy resolution of 270 meV is obtained at 6462.20 eV. The second spectrometer, consisting of 14 spherically bent Si(110) crystal analyzers (not diced), is positioned at the backward scattering angles (high-q) enabling the study of non-dipole transitions. The solid angle of this spectrometer is about 0.9% of 4π sr, with a combined energy resolution of 600 meV using the Si (311) monochromator. These features exceed the specifications of currently existing relevant instrumentation, opening new opportunities for the routine application of this photon-in/photon-out hard x-ray technique to emerging research in multidisciplinary scientific fields, such as energy-related sciences, material sciences, physical chemistry, etc.

Dimosthenis Sokaras - One of the best experts on this subject based on the ideXlab platform.

  • a seven crystal johann type hard x ray spectrometer at the stanford synchrotron radiation lightsource
    Review of Scientific Instruments, 2013
    Co-Authors: Dimosthenis Sokaras, Dennis Nordlund, T C Weng, P Velikov, D Wenger, A Garachtchenko, M George, V Borzenets, Roberto Alonsomori, B Johnson
    Abstract:

    We present a multicrystal Johann-type hard x-ray spectrometer (∼5–18 keV) recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The instrument is set at the wiggler beamline 6-2 equipped with two liquid nitrogen cooled monochromators – Si(111) and Si(311) – as well as collimating and focusing optics. The spectrometer consists of seven spherically bent crystal analyzers placed on intersecting vertical Rowland Circles of 1 m of diameter. The spectrometer is scanned vertically capturing an extended backscattering Bragg angular range (88°–74°) while maintaining all crystals on the Rowland circle trace. The instrument operates in atmospheric pressure by means of a helium bag and when all the seven crystals are used (100 mm of projected diameter each), has a solid angle of about 0.45% of 4π sr. The typical resolving power is in the order of EΔE∼10000. The spectrometer's high detection efficiency combined with the beamline 6-2 characteristics permits routine studies of x-ray emission, high energy resolution fluorescence detected x-ray absorption and resonant inelastic x-ray scattering of very diluted samples as well as implementation of demanding in situ environments.

  • a high resolution and large solid angle x ray raman spectroscopy end station at the stanford synchrotron radiation lightsource
    Review of Scientific Instruments, 2012
    Co-Authors: Dimosthenis Sokaras, Dennis Nordlund, T C Weng, Alonso R Mori, P Velikov, D Wenger, A Garachtchenko, M George, V Borzenets, B Johnson
    Abstract:

    We present a new x-ray Raman spectroscopy end-station recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The end-station is located at wiggler beamline 6-2 equipped with two monochromators-Si(111) and Si(311) as well as collimating and focusing optics. It consists of two multi-crystal Johann type spectrometers arranged on intersecting Rowland Circles of 1 m diameter. The first one, positioned at the forward scattering angles (low-q), consists of 40 spherically bent and diced Si(110) crystals with 100 mm diameters providing about 1.9% of 4π sr solid angle of detection. When operated in the (440) order in combination with the Si (311) monochromator, an overall energy resolution of 270 meV is obtained at 6462.20 eV. The second spectrometer, consisting of 14 spherically bent Si(110) crystal analyzers (not diced), is positioned at the backward scattering angles (high-q) enabling the study of non-dipole transitions. The solid angle of this spectrometer is about 0.9% of 4π sr, with a combined energy resolution of 600 meV using the Si (311) monochromator. These features exceed the specifications of currently existing relevant instrumentation, opening new opportunities for the routine application of this photon-in/photon-out hard x-ray technique to emerging research in multidisciplinary scientific fields, such as energy-related sciences, material sciences, physical chemistry, etc.

T C Weng - One of the best experts on this subject based on the ideXlab platform.

  • a seven crystal johann type hard x ray spectrometer at the stanford synchrotron radiation lightsource
    Review of Scientific Instruments, 2013
    Co-Authors: Dimosthenis Sokaras, Dennis Nordlund, T C Weng, P Velikov, D Wenger, A Garachtchenko, M George, V Borzenets, Roberto Alonsomori, B Johnson
    Abstract:

    We present a multicrystal Johann-type hard x-ray spectrometer (∼5–18 keV) recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The instrument is set at the wiggler beamline 6-2 equipped with two liquid nitrogen cooled monochromators – Si(111) and Si(311) – as well as collimating and focusing optics. The spectrometer consists of seven spherically bent crystal analyzers placed on intersecting vertical Rowland Circles of 1 m of diameter. The spectrometer is scanned vertically capturing an extended backscattering Bragg angular range (88°–74°) while maintaining all crystals on the Rowland circle trace. The instrument operates in atmospheric pressure by means of a helium bag and when all the seven crystals are used (100 mm of projected diameter each), has a solid angle of about 0.45% of 4π sr. The typical resolving power is in the order of EΔE∼10000. The spectrometer's high detection efficiency combined with the beamline 6-2 characteristics permits routine studies of x-ray emission, high energy resolution fluorescence detected x-ray absorption and resonant inelastic x-ray scattering of very diluted samples as well as implementation of demanding in situ environments.

  • a high resolution and large solid angle x ray raman spectroscopy end station at the stanford synchrotron radiation lightsource
    Review of Scientific Instruments, 2012
    Co-Authors: Dimosthenis Sokaras, Dennis Nordlund, T C Weng, Alonso R Mori, P Velikov, D Wenger, A Garachtchenko, M George, V Borzenets, B Johnson
    Abstract:

    We present a new x-ray Raman spectroscopy end-station recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The end-station is located at wiggler beamline 6-2 equipped with two monochromators-Si(111) and Si(311) as well as collimating and focusing optics. It consists of two multi-crystal Johann type spectrometers arranged on intersecting Rowland Circles of 1 m diameter. The first one, positioned at the forward scattering angles (low-q), consists of 40 spherically bent and diced Si(110) crystals with 100 mm diameters providing about 1.9% of 4π sr solid angle of detection. When operated in the (440) order in combination with the Si (311) monochromator, an overall energy resolution of 270 meV is obtained at 6462.20 eV. The second spectrometer, consisting of 14 spherically bent Si(110) crystal analyzers (not diced), is positioned at the backward scattering angles (high-q) enabling the study of non-dipole transitions. The solid angle of this spectrometer is about 0.9% of 4π sr, with a combined energy resolution of 600 meV using the Si (311) monochromator. These features exceed the specifications of currently existing relevant instrumentation, opening new opportunities for the routine application of this photon-in/photon-out hard x-ray technique to emerging research in multidisciplinary scientific fields, such as energy-related sciences, material sciences, physical chemistry, etc.

Dennis Nordlund - One of the best experts on this subject based on the ideXlab platform.

  • a seven crystal johann type hard x ray spectrometer at the stanford synchrotron radiation lightsource
    Review of Scientific Instruments, 2013
    Co-Authors: Dimosthenis Sokaras, Dennis Nordlund, T C Weng, P Velikov, D Wenger, A Garachtchenko, M George, V Borzenets, Roberto Alonsomori, B Johnson
    Abstract:

    We present a multicrystal Johann-type hard x-ray spectrometer (∼5–18 keV) recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The instrument is set at the wiggler beamline 6-2 equipped with two liquid nitrogen cooled monochromators – Si(111) and Si(311) – as well as collimating and focusing optics. The spectrometer consists of seven spherically bent crystal analyzers placed on intersecting vertical Rowland Circles of 1 m of diameter. The spectrometer is scanned vertically capturing an extended backscattering Bragg angular range (88°–74°) while maintaining all crystals on the Rowland circle trace. The instrument operates in atmospheric pressure by means of a helium bag and when all the seven crystals are used (100 mm of projected diameter each), has a solid angle of about 0.45% of 4π sr. The typical resolving power is in the order of EΔE∼10000. The spectrometer's high detection efficiency combined with the beamline 6-2 characteristics permits routine studies of x-ray emission, high energy resolution fluorescence detected x-ray absorption and resonant inelastic x-ray scattering of very diluted samples as well as implementation of demanding in situ environments.

  • a high resolution and large solid angle x ray raman spectroscopy end station at the stanford synchrotron radiation lightsource
    Review of Scientific Instruments, 2012
    Co-Authors: Dimosthenis Sokaras, Dennis Nordlund, T C Weng, Alonso R Mori, P Velikov, D Wenger, A Garachtchenko, M George, V Borzenets, B Johnson
    Abstract:

    We present a new x-ray Raman spectroscopy end-station recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The end-station is located at wiggler beamline 6-2 equipped with two monochromators-Si(111) and Si(311) as well as collimating and focusing optics. It consists of two multi-crystal Johann type spectrometers arranged on intersecting Rowland Circles of 1 m diameter. The first one, positioned at the forward scattering angles (low-q), consists of 40 spherically bent and diced Si(110) crystals with 100 mm diameters providing about 1.9% of 4π sr solid angle of detection. When operated in the (440) order in combination with the Si (311) monochromator, an overall energy resolution of 270 meV is obtained at 6462.20 eV. The second spectrometer, consisting of 14 spherically bent Si(110) crystal analyzers (not diced), is positioned at the backward scattering angles (high-q) enabling the study of non-dipole transitions. The solid angle of this spectrometer is about 0.9% of 4π sr, with a combined energy resolution of 600 meV using the Si (311) monochromator. These features exceed the specifications of currently existing relevant instrumentation, opening new opportunities for the routine application of this photon-in/photon-out hard x-ray technique to emerging research in multidisciplinary scientific fields, such as energy-related sciences, material sciences, physical chemistry, etc.

P Velikov - One of the best experts on this subject based on the ideXlab platform.

  • a seven crystal johann type hard x ray spectrometer at the stanford synchrotron radiation lightsource
    Review of Scientific Instruments, 2013
    Co-Authors: Dimosthenis Sokaras, Dennis Nordlund, T C Weng, P Velikov, D Wenger, A Garachtchenko, M George, V Borzenets, Roberto Alonsomori, B Johnson
    Abstract:

    We present a multicrystal Johann-type hard x-ray spectrometer (∼5–18 keV) recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The instrument is set at the wiggler beamline 6-2 equipped with two liquid nitrogen cooled monochromators – Si(111) and Si(311) – as well as collimating and focusing optics. The spectrometer consists of seven spherically bent crystal analyzers placed on intersecting vertical Rowland Circles of 1 m of diameter. The spectrometer is scanned vertically capturing an extended backscattering Bragg angular range (88°–74°) while maintaining all crystals on the Rowland circle trace. The instrument operates in atmospheric pressure by means of a helium bag and when all the seven crystals are used (100 mm of projected diameter each), has a solid angle of about 0.45% of 4π sr. The typical resolving power is in the order of EΔE∼10000. The spectrometer's high detection efficiency combined with the beamline 6-2 characteristics permits routine studies of x-ray emission, high energy resolution fluorescence detected x-ray absorption and resonant inelastic x-ray scattering of very diluted samples as well as implementation of demanding in situ environments.

  • a high resolution and large solid angle x ray raman spectroscopy end station at the stanford synchrotron radiation lightsource
    Review of Scientific Instruments, 2012
    Co-Authors: Dimosthenis Sokaras, Dennis Nordlund, T C Weng, Alonso R Mori, P Velikov, D Wenger, A Garachtchenko, M George, V Borzenets, B Johnson
    Abstract:

    We present a new x-ray Raman spectroscopy end-station recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The end-station is located at wiggler beamline 6-2 equipped with two monochromators-Si(111) and Si(311) as well as collimating and focusing optics. It consists of two multi-crystal Johann type spectrometers arranged on intersecting Rowland Circles of 1 m diameter. The first one, positioned at the forward scattering angles (low-q), consists of 40 spherically bent and diced Si(110) crystals with 100 mm diameters providing about 1.9% of 4π sr solid angle of detection. When operated in the (440) order in combination with the Si (311) monochromator, an overall energy resolution of 270 meV is obtained at 6462.20 eV. The second spectrometer, consisting of 14 spherically bent Si(110) crystal analyzers (not diced), is positioned at the backward scattering angles (high-q) enabling the study of non-dipole transitions. The solid angle of this spectrometer is about 0.9% of 4π sr, with a combined energy resolution of 600 meV using the Si (311) monochromator. These features exceed the specifications of currently existing relevant instrumentation, opening new opportunities for the routine application of this photon-in/photon-out hard x-ray technique to emerging research in multidisciplinary scientific fields, such as energy-related sciences, material sciences, physical chemistry, etc.