Scanivalve

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 135 Experts worldwide ranked by ideXlab platform

S. Anish - One of the best experts on this subject based on the ideXlab platform.

  • Aerodynamic performance of profiled endwalls with upstream slot purge flow in a linear turbine cascade having pressure side separation
    Physics of Fluids, 2021
    Co-Authors: Sushanlal Babu, S. Anish
    Abstract:

    In aeroengines, purge flow directly fed from the compressor (which bypasses the combustor) is introduced through the disk space between blade rows to prevent the hot ingress. Higher quantity of purge gas fed through the wheel space can provide additional thermal protection to the passage endwall and blade surfaces. However, the interaction of purge flow with the mainstream flow leads to higher secondary losses. Secondary losses inside a turbine blade passage can be reduced effectively by endwall contouring. This paper presents computational investigation on the influence of non-axisymmetric endwall contouring over endwall secondary flow modification in the presence of purge flow with the pressure side bubble (PSB). The experimental analysis was conducted for the base case without purge and base case with purge (BCP) configurations having flat endwalls. The total pressure loss coefficient and exit yaw angle deviation were measured with the help of a five-hole pressure probe. Static pressure distribution over the blade midspan was obtained by 16 channel Scanivalve. Aerodynamic performances of three different profiled endwalls are numerically analyzed and are compared against the BCP configuration. The effects of different contoured endwall geometries on endwall static pressure distribution and secondary kinetic energy were also discussed. Analysis shows that in the first contoured endwall configuration (EC1), the formation of stagnation zones at a contour valley close to the suction surface causes the exit total pressure loss coefficient to increase. The shifting of the contour valley near to the pressure surface (EC2 configuration) has resulted in local acceleration of the diverted pressure side leg of the horseshoe vortex over the hump toward the end of the passage. In the third configuration (EC3 configuration), reduced valley depth and optimum hump height have effectively redistributed the endwall pitchwise pressure gradient. The increased static pressure coefficient at the endwall near to the pressure surface has eliminated the PSB formation. In addition, computational results of unsteady Reynolds averaged Navier–Stokes simulations are obtained for analyzing transient behavior of PSB, with more emphasis on its migration on the pressure surface and transport across the blade passage. The additional work done by the mainstream fluid to transport the low momentum PSB fluid has caused higher aerodynamic penalty at the blade exit region. In this viewpoint, the implementation of contoured endwalls has shown beneficial effects by eliminating the PSB and related secondary vortices. At 27% of axial chord downstream of the blade trailing edge, a 4.1% reduction in the total pressure loss coefficient was achieved with endwall contouring.

  • Transient analysis of upstream wake inside turbine blade passage with purge flow
    Aerospace Science and Technology, 2020
    Co-Authors: Babu Sushanlal, S. Anish
    Abstract:

    Abstract Secondary air bled from the compressor which bypasses the combustion chamber is used to seal the turbine components from incoming hot gas. Interaction of this secondary air (also known as purge flow) with the mainstream flow can alter the flow characteristics of turbine blade passage. This paper presents numerical investigation of interaction between ejected purge flow and mainstream flow in the presence of upstream disturbances/wakes. Steady as well as unsteady simulations are carried out using Reynolds Averaged Navier Stokes equations and SST turbulence model. The numerical results are validated with experimental measurements obtained at the blade exit region using an L shaped 5 hole probe and Scanivalve. Upstream wakes are generated by a circular cylinder, kept upstream of blade leading edge at different pitch-wise positions. For transient analysis cylinders are kept at stagnation line (STW) and middle of the blade passage (MW). The analysis reveals the interaction effects of two more additional vortices, viz. the cylinder vortex (Vc) and the purge vortex (Vp). Steady state analysis shows an increase in the underturning at blade exit due to the squeezing of the pressure side leg (PSL) of horse shoe vortex towards the pressure surface by the cylinder vortices (Vp). The unsteady analysis reveals the formation of filament shaped wake structures which breaks into smaller vortical structures at the blade leading edge for STW configuration. These filaments lead to the formation of additional pressure surface vortices. On the contrary, in MW configuration, the obstruction created by the purge flow causes the upper portion of cylinder vortices bend forward, creating a shearing action along the spanwise direction. In MW configuration, the horse shoe vortices generated from the upstream cylinder are broken by the purge vortex whereas in the STW configuration it slides over the purge vortex and move towards the suction surface under the influence of the pitchwise pressure gradient.

Jianying Gan - One of the best experts on this subject based on the ideXlab platform.

  • A dynamic two-dimensional system for measuring volatile organic compound volatilization and movement in soils.
    Journal of environmental quality, 2002
    Co-Authors: Suzanne E. Allaire, Scott R. Yates, F. F. Ernst, Jianying Gan
    Abstract:

    There is an important need to develop instrumentation that allows better understanding of atmospheric emission of toxic volatile compounds associated with soil management. For this purpose, chemical movement and distribution in the soil profile should be simultaneously monitored with its volatilization. A two-dimensional rectangular soil column was constructed and a dynamic sequential volatilization flux chamber was attached to the top of the column. The flux chamber was connected through a manifold valve to a gas chromatograph (GC) for real-time concentration measurement. Gas distribution in the soil profile was sampled with gas-tight syringes at selected times and analyzed with a GC. A pressure transducer was connected to a Scanivalve to automatically measure the pressure distribution in the gas phase of the soil profile. The system application was demonstrated by packing the column with a sandy loam in a symmetrical bed-furrow system. A 5-h furrow irrigation was started 24 h after the injection of a soil fumigant, propargyl bromide (3-bromo-1-propyne; 3BP). The experience showed the importance of measuring lateral volatilization variability, pressure distribution in the gas phase, chemical distribution between the different phases (liquid, gas, and sorbed), and the effect of irrigation on the volatilization. Gas movement, volatilization, water infiltration, and distribution of degradation product (Br ) were symmetric around the bed within 10%. The system saves labor cost and time. This versatile system can be modified and used to compare management practices, estimate concentration-time indexes for pest control, study chemical movement, degradation, and emissions, and test mathematical models.

Suzanne E. Allaire - One of the best experts on this subject based on the ideXlab platform.

  • A dynamic two-dimensional system for measuring volatile organic compound volatilization and movement in soils.
    Journal of environmental quality, 2002
    Co-Authors: Suzanne E. Allaire, Scott R. Yates, F. F. Ernst, Jianying Gan
    Abstract:

    There is an important need to develop instrumentation that allows better understanding of atmospheric emission of toxic volatile compounds associated with soil management. For this purpose, chemical movement and distribution in the soil profile should be simultaneously monitored with its volatilization. A two-dimensional rectangular soil column was constructed and a dynamic sequential volatilization flux chamber was attached to the top of the column. The flux chamber was connected through a manifold valve to a gas chromatograph (GC) for real-time concentration measurement. Gas distribution in the soil profile was sampled with gas-tight syringes at selected times and analyzed with a GC. A pressure transducer was connected to a Scanivalve to automatically measure the pressure distribution in the gas phase of the soil profile. The system application was demonstrated by packing the column with a sandy loam in a symmetrical bed-furrow system. A 5-h furrow irrigation was started 24 h after the injection of a soil fumigant, propargyl bromide (3-bromo-1-propyne; 3BP). The experience showed the importance of measuring lateral volatilization variability, pressure distribution in the gas phase, chemical distribution between the different phases (liquid, gas, and sorbed), and the effect of irrigation on the volatilization. Gas movement, volatilization, water infiltration, and distribution of degradation product (Br ) were symmetric around the bed within 10%. The system saves labor cost and time. This versatile system can be modified and used to compare management practices, estimate concentration-time indexes for pest control, study chemical movement, degradation, and emissions, and test mathematical models.

F. F. Ernst - One of the best experts on this subject based on the ideXlab platform.

  • A dynamic two-dimensional system for measuring volatile organic compound volatilization and movement in soils.
    Journal of environmental quality, 2002
    Co-Authors: Suzanne E. Allaire, Scott R. Yates, F. F. Ernst, Jianying Gan
    Abstract:

    There is an important need to develop instrumentation that allows better understanding of atmospheric emission of toxic volatile compounds associated with soil management. For this purpose, chemical movement and distribution in the soil profile should be simultaneously monitored with its volatilization. A two-dimensional rectangular soil column was constructed and a dynamic sequential volatilization flux chamber was attached to the top of the column. The flux chamber was connected through a manifold valve to a gas chromatograph (GC) for real-time concentration measurement. Gas distribution in the soil profile was sampled with gas-tight syringes at selected times and analyzed with a GC. A pressure transducer was connected to a Scanivalve to automatically measure the pressure distribution in the gas phase of the soil profile. The system application was demonstrated by packing the column with a sandy loam in a symmetrical bed-furrow system. A 5-h furrow irrigation was started 24 h after the injection of a soil fumigant, propargyl bromide (3-bromo-1-propyne; 3BP). The experience showed the importance of measuring lateral volatilization variability, pressure distribution in the gas phase, chemical distribution between the different phases (liquid, gas, and sorbed), and the effect of irrigation on the volatilization. Gas movement, volatilization, water infiltration, and distribution of degradation product (Br ) were symmetric around the bed within 10%. The system saves labor cost and time. This versatile system can be modified and used to compare management practices, estimate concentration-time indexes for pest control, study chemical movement, degradation, and emissions, and test mathematical models.

Scott R. Yates - One of the best experts on this subject based on the ideXlab platform.

  • A dynamic two-dimensional system for measuring volatile organic compound volatilization and movement in soils.
    Journal of environmental quality, 2002
    Co-Authors: Suzanne E. Allaire, Scott R. Yates, F. F. Ernst, Jianying Gan
    Abstract:

    There is an important need to develop instrumentation that allows better understanding of atmospheric emission of toxic volatile compounds associated with soil management. For this purpose, chemical movement and distribution in the soil profile should be simultaneously monitored with its volatilization. A two-dimensional rectangular soil column was constructed and a dynamic sequential volatilization flux chamber was attached to the top of the column. The flux chamber was connected through a manifold valve to a gas chromatograph (GC) for real-time concentration measurement. Gas distribution in the soil profile was sampled with gas-tight syringes at selected times and analyzed with a GC. A pressure transducer was connected to a Scanivalve to automatically measure the pressure distribution in the gas phase of the soil profile. The system application was demonstrated by packing the column with a sandy loam in a symmetrical bed-furrow system. A 5-h furrow irrigation was started 24 h after the injection of a soil fumigant, propargyl bromide (3-bromo-1-propyne; 3BP). The experience showed the importance of measuring lateral volatilization variability, pressure distribution in the gas phase, chemical distribution between the different phases (liquid, gas, and sorbed), and the effect of irrigation on the volatilization. Gas movement, volatilization, water infiltration, and distribution of degradation product (Br ) were symmetric around the bed within 10%. The system saves labor cost and time. This versatile system can be modified and used to compare management practices, estimate concentration-time indexes for pest control, study chemical movement, degradation, and emissions, and test mathematical models.