Schaeffler Diagram

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 144 Experts worldwide ranked by ideXlab platform

Aly Saeed - One of the best experts on this subject based on the ideXlab platform.

  • Low Activation-Modified High Manganese-Nitrogen Austenitic Stainless Steel for Fast Reactor Pressure Vessel Cladding
    Nuclear Science, 2018
    Co-Authors: Aly Saeed, Raed Mohmed El-shazly, Saeed Ghali, Samir Yousha El-khamisy, Soad Abd El-moneem El-fiki, Mamdouh Eissa
    Abstract:

    Low and free nickel austenitic stainless steel alloys were developed successfully and proposed to be used as a liquid sodium coolant fast reactor pressure vessel cladding. A standard austenitic stainless steel SS316L (AISI 316L) was produced as a reference sample. The nickel content was partially or totally replaced by manganese and nitrogen. The microstructure of the produced stainless steel alloys was investigated using Schaeffler Diagram, optical microscopy and X-ray diffraction patterns (XRD). Mechanical properties of the developed stainless steel grads were investigated using Vickers hardness, impact and tensile tests at room temperature. Sodium chloride was used to study the corrosion rate of the investigated alloys by open circuit potential technique. Slow and total slow neutrons removal cross sections were measured using 241 Am-Be neutron source and highly calibrated He-3 detector. Eight gamma ray lines which emitted from 60 Co and 232 Th radioactive sources and HPGe detector were used to study the attenuation parameters of the produced alloys. Metallography, Schaeffler Diagram and XRD results showed that all the produced stainless steels are mainly of austenite phase with a small ferrite phase. The developed manganese-nitrogen stainless steels showed higher hardness, yield and ultimate tensile strength than SS316L. The elongation of developed stainless steels is relatively lower than the standard SS316L. The impact toughness was reduced with replacement of Ni by Mn. The developed manganese stainless steels have a higher total slow removal cross section than SS316L. On the other hand, the slow neutron and gamma rays have nearly the same behavior for all studied stainless steels.

  • Attenuation capability of low activation-modified high manganese austenitic stainless steel for fusion reactor system
    Fusion Engineering and Design, 2016
    Co-Authors: Mamdouh Eissa, Raed Mohmed El-shazly, Saeed Ghali, Soad Abd El-moneem El-fiki, S. U. El-kameesy, Aly Saeed
    Abstract:

    Abstract Low nickel-high manganese austenitic stainless steel alloys, SSMn9Ni and SSMn10Ni, were developed to use as a shielding material in fusion reactor system. A standard austenitic stainless steel SS316L was prepared and studied as a reference sample. The microstructure properties of the present stainless steel alloys were investigated using Schaeffler Diagram, optical microscopy, and X-ray diffraction pattern. Mainly, an austenite phase was observed for the prepared stainless steel alloys. Additionally, a small ferrite phase was observed in SS316L and SSMn10Ni samples. The mechanical properties of the prepared alloys were studied using Vickers hardness and tensile tests at room temperature. The studied manganese stainless steel alloys showed higher hardness, yield strength, and ultimate tensile strength than SS316L. On the other hand, the manganese stainless steel elongation had relatively lower values than the standard SS316L. The removal cross section for both slow and total slow (primary and those slowed down in sample) neutrons were carried out using 241Am-Be neutron source. Gamma ray attenuation parameters were carried out for different gamma ray energy lines which emitted from 60Co and 232Th radioactive sources. The developed manganese stainless steel alloys had a higher total slow removal cross section than SS316L. While the slow neutron and gamma rays were nearly the same for all studied stainless steel alloys. From the obtained results, the developed manganese stainless steel alloys could be considered as candidate materials for fusion reactor system with low activation based on the short life time of manganese isotopes in a comparison with nickel.

Mamdouh Eissa - One of the best experts on this subject based on the ideXlab platform.

  • Low Activation-Modified High Manganese-Nitrogen Austenitic Stainless Steel for Fast Reactor Pressure Vessel Cladding
    Nuclear Science, 2018
    Co-Authors: Aly Saeed, Raed Mohmed El-shazly, Saeed Ghali, Samir Yousha El-khamisy, Soad Abd El-moneem El-fiki, Mamdouh Eissa
    Abstract:

    Low and free nickel austenitic stainless steel alloys were developed successfully and proposed to be used as a liquid sodium coolant fast reactor pressure vessel cladding. A standard austenitic stainless steel SS316L (AISI 316L) was produced as a reference sample. The nickel content was partially or totally replaced by manganese and nitrogen. The microstructure of the produced stainless steel alloys was investigated using Schaeffler Diagram, optical microscopy and X-ray diffraction patterns (XRD). Mechanical properties of the developed stainless steel grads were investigated using Vickers hardness, impact and tensile tests at room temperature. Sodium chloride was used to study the corrosion rate of the investigated alloys by open circuit potential technique. Slow and total slow neutrons removal cross sections were measured using 241 Am-Be neutron source and highly calibrated He-3 detector. Eight gamma ray lines which emitted from 60 Co and 232 Th radioactive sources and HPGe detector were used to study the attenuation parameters of the produced alloys. Metallography, Schaeffler Diagram and XRD results showed that all the produced stainless steels are mainly of austenite phase with a small ferrite phase. The developed manganese-nitrogen stainless steels showed higher hardness, yield and ultimate tensile strength than SS316L. The elongation of developed stainless steels is relatively lower than the standard SS316L. The impact toughness was reduced with replacement of Ni by Mn. The developed manganese stainless steels have a higher total slow removal cross section than SS316L. On the other hand, the slow neutron and gamma rays have nearly the same behavior for all studied stainless steels.

  • Attenuation capability of low activation-modified high manganese austenitic stainless steel for fusion reactor system
    Fusion Engineering and Design, 2016
    Co-Authors: Mamdouh Eissa, Raed Mohmed El-shazly, Saeed Ghali, Soad Abd El-moneem El-fiki, S. U. El-kameesy, Aly Saeed
    Abstract:

    Abstract Low nickel-high manganese austenitic stainless steel alloys, SSMn9Ni and SSMn10Ni, were developed to use as a shielding material in fusion reactor system. A standard austenitic stainless steel SS316L was prepared and studied as a reference sample. The microstructure properties of the present stainless steel alloys were investigated using Schaeffler Diagram, optical microscopy, and X-ray diffraction pattern. Mainly, an austenite phase was observed for the prepared stainless steel alloys. Additionally, a small ferrite phase was observed in SS316L and SSMn10Ni samples. The mechanical properties of the prepared alloys were studied using Vickers hardness and tensile tests at room temperature. The studied manganese stainless steel alloys showed higher hardness, yield strength, and ultimate tensile strength than SS316L. On the other hand, the manganese stainless steel elongation had relatively lower values than the standard SS316L. The removal cross section for both slow and total slow (primary and those slowed down in sample) neutrons were carried out using 241Am-Be neutron source. Gamma ray attenuation parameters were carried out for different gamma ray energy lines which emitted from 60Co and 232Th radioactive sources. The developed manganese stainless steel alloys had a higher total slow removal cross section than SS316L. While the slow neutron and gamma rays were nearly the same for all studied stainless steel alloys. From the obtained results, the developed manganese stainless steel alloys could be considered as candidate materials for fusion reactor system with low activation based on the short life time of manganese isotopes in a comparison with nickel.

Atsushi Yamamoto - One of the best experts on this subject based on the ideXlab platform.

  • small scale resistance spot welding of austenitic stainless steels
    Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 2008
    Co-Authors: Shinji Fukumoto, Kana Fujiwara, Shin Toji, Atsushi Yamamoto
    Abstract:

    Abstract Small-scale resistance spot welding (SSRSW) was carried out for austenitic stainless steels. A weld lobe that shows the process window for making sound joints was obtained for type 304 stainless steel thin sheets, and the effects of welding current, force and weld time on joint strength and nugget size were investigated. The cooling rate that was estimated from the solidification cell size was approximately 2.4 × 10 5  K/s which is almost similar to that produced by laser beam welding. The microstructures of weld zones were almost fully austenitic due to the rapid solidification rate. Despite the fully austenitic microstructure, no hot cracking was found in types 302, 304, 316L, 310S and 347 austenitic stainless steels by SSRSW. Rapid cooling rate in SSRSW made it difficult to predict the microstructures from the conventional Schaeffler Diagram.

Shinji Fukumoto - One of the best experts on this subject based on the ideXlab platform.

  • small scale resistance spot welding of austenitic stainless steels
    Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 2008
    Co-Authors: Shinji Fukumoto, Kana Fujiwara, Shin Toji, Atsushi Yamamoto
    Abstract:

    Abstract Small-scale resistance spot welding (SSRSW) was carried out for austenitic stainless steels. A weld lobe that shows the process window for making sound joints was obtained for type 304 stainless steel thin sheets, and the effects of welding current, force and weld time on joint strength and nugget size were investigated. The cooling rate that was estimated from the solidification cell size was approximately 2.4 × 10 5  K/s which is almost similar to that produced by laser beam welding. The microstructures of weld zones were almost fully austenitic due to the rapid solidification rate. Despite the fully austenitic microstructure, no hot cracking was found in types 302, 304, 316L, 310S and 347 austenitic stainless steels by SSRSW. Rapid cooling rate in SSRSW made it difficult to predict the microstructures from the conventional Schaeffler Diagram.

Soad Abd El-moneem El-fiki - One of the best experts on this subject based on the ideXlab platform.

  • Low Activation-Modified High Manganese-Nitrogen Austenitic Stainless Steel for Fast Reactor Pressure Vessel Cladding
    Nuclear Science, 2018
    Co-Authors: Aly Saeed, Raed Mohmed El-shazly, Saeed Ghali, Samir Yousha El-khamisy, Soad Abd El-moneem El-fiki, Mamdouh Eissa
    Abstract:

    Low and free nickel austenitic stainless steel alloys were developed successfully and proposed to be used as a liquid sodium coolant fast reactor pressure vessel cladding. A standard austenitic stainless steel SS316L (AISI 316L) was produced as a reference sample. The nickel content was partially or totally replaced by manganese and nitrogen. The microstructure of the produced stainless steel alloys was investigated using Schaeffler Diagram, optical microscopy and X-ray diffraction patterns (XRD). Mechanical properties of the developed stainless steel grads were investigated using Vickers hardness, impact and tensile tests at room temperature. Sodium chloride was used to study the corrosion rate of the investigated alloys by open circuit potential technique. Slow and total slow neutrons removal cross sections were measured using 241 Am-Be neutron source and highly calibrated He-3 detector. Eight gamma ray lines which emitted from 60 Co and 232 Th radioactive sources and HPGe detector were used to study the attenuation parameters of the produced alloys. Metallography, Schaeffler Diagram and XRD results showed that all the produced stainless steels are mainly of austenite phase with a small ferrite phase. The developed manganese-nitrogen stainless steels showed higher hardness, yield and ultimate tensile strength than SS316L. The elongation of developed stainless steels is relatively lower than the standard SS316L. The impact toughness was reduced with replacement of Ni by Mn. The developed manganese stainless steels have a higher total slow removal cross section than SS316L. On the other hand, the slow neutron and gamma rays have nearly the same behavior for all studied stainless steels.

  • Attenuation capability of low activation-modified high manganese austenitic stainless steel for fusion reactor system
    Fusion Engineering and Design, 2016
    Co-Authors: Mamdouh Eissa, Raed Mohmed El-shazly, Saeed Ghali, Soad Abd El-moneem El-fiki, S. U. El-kameesy, Aly Saeed
    Abstract:

    Abstract Low nickel-high manganese austenitic stainless steel alloys, SSMn9Ni and SSMn10Ni, were developed to use as a shielding material in fusion reactor system. A standard austenitic stainless steel SS316L was prepared and studied as a reference sample. The microstructure properties of the present stainless steel alloys were investigated using Schaeffler Diagram, optical microscopy, and X-ray diffraction pattern. Mainly, an austenite phase was observed for the prepared stainless steel alloys. Additionally, a small ferrite phase was observed in SS316L and SSMn10Ni samples. The mechanical properties of the prepared alloys were studied using Vickers hardness and tensile tests at room temperature. The studied manganese stainless steel alloys showed higher hardness, yield strength, and ultimate tensile strength than SS316L. On the other hand, the manganese stainless steel elongation had relatively lower values than the standard SS316L. The removal cross section for both slow and total slow (primary and those slowed down in sample) neutrons were carried out using 241Am-Be neutron source. Gamma ray attenuation parameters were carried out for different gamma ray energy lines which emitted from 60Co and 232Th radioactive sources. The developed manganese stainless steel alloys had a higher total slow removal cross section than SS316L. While the slow neutron and gamma rays were nearly the same for all studied stainless steel alloys. From the obtained results, the developed manganese stainless steel alloys could be considered as candidate materials for fusion reactor system with low activation based on the short life time of manganese isotopes in a comparison with nickel.