The Experts below are selected from a list of 318 Experts worldwide ranked by ideXlab platform
Somsak Panha - One of the best experts on this subject based on the ideXlab platform.
-
a taxonomic review of the centipede genus Scolopendra linnaeus 1758 scolopendromorpha scolopendridae in mainland southeast asia with description of a new species from laos
ZooKeys, 2016Co-Authors: Warut Siriwut, Gregory D Edgecombe, Chirasak Sutcharit, Piyoros Tongkerd, Somsak PanhaAbstract:The centipede genus Scolopendra in mainland Southeast Asia is reviewed taxonomically based on morphological characters, informed by a molecular phylogenetic analysis using sequences from three mitochondrial and nuclear genes (COI, 16S rRNA and 28S rRNA). Eight nominal species of Scolopendra, namely Scolopendra morsitans Linnaeus, 1758, Scolopendra subspinipes Leach, 1816, Scolopendra dehaani Brandt, 1840, Scolopendra multidens Newport, 1844, Scolopendra calcarata Porat, 1876, Scolopendra japonica Koch, 1878, Scolopendra pinguis Pocock, 1891, and Scolopendra dawydoffi Kronmuller, 2012, are redescribed together with some revision of type materials. Geographical variation in each species has been compiled with reference to samples that span their distribution ranges in Southeast Asia and some parts of neighbouring areas such as East Asia, the Indian Ocean, and Africa. Comparative study of traditional taxonomic characters from external morphology provides further information to distinguish some closely related species. Scolopendra cataracta Siriwut, Edgecombe & Panha, sp. n., is described from the southern part of Laos, with additional records in Thailand and Vietnam. The phylogenetic framework for Southeast Asian Scolopendra recognizes Scolopendra calcarata + Scolopendra pinguis, Scolopendra morsitans, and a Scolopendra subspinipes group that unites the other six species as the main clades. Within the Scolopendra subspinipes group, two monophyletic groups can be distinguished by having either slender or short, thick ultimate leg prefemora and different numbers of apical spines on the coxopleuron. Scolopendra arborea Lewis, 1982, is placed in subjective synonymy with Scolopendra dehaani. A survey of external morphology of the genital segments confirms its potential for improving species identification in Scolopendra. Some observations on biology and behaviour are recorded based on field surveys in this area.
-
the centipede genus Scolopendra in mainland southeast asia molecular phylogenetics geometric morphometrics and external morphology as tools for species delimitation
PLOS ONE, 2015Co-Authors: Warut Siriwut, Gregory D Edgecombe, Chirasak Sutcharit, Somsak PanhaAbstract:Seven Scolopendra species from the Southeast Asian mainland delimited based on standard external morphological characters represent monophyletic groups in phylogenetic trees inferred from concatenated sequences of three gene fragments (cytochrome c oxidase subunit 1, 16S rRNA and 28S rRNA) using Maximum likelihood and Bayesian inference. Geometric morphometric description of shape variation in the cephalic plate, forcipular coxosternite, and tergite of the ultimate leg-bearing segment provides additional criteria for distinguishing species. Colouration patterns in some Scolopendra species show a high degree of fit to phylogenetic trees at the population level. The most densely sampled species, Scolopendra dehaani Brandt, 1840, has three subclades with allopatric distributions in mainland SE Asia. The molecular phylogeny of S. pinguis Pocock, 1891, indicated ontogenetic colour variation among its populations. The taxonomic validation of S. dawydoffi Kronmuller, 2012, S. japonica Koch, 1878, and S. dehaani Brandt, 1840, each a former subspecies of S. subspinipes Leach, 1814 sensu Lewis, 2010, as full species was supported by molecular information and additional morphological data. Species delimitation in these taxonomically challenging animals is facilitated by an integrative approach that draws on both morphology and molecular phylogeny.
Warut Siriwut - One of the best experts on this subject based on the ideXlab platform.
-
a taxonomic review of the centipede genus Scolopendra linnaeus 1758 scolopendromorpha scolopendridae in mainland southeast asia with description of a new species from laos
ZooKeys, 2016Co-Authors: Warut Siriwut, Gregory D Edgecombe, Chirasak Sutcharit, Piyoros Tongkerd, Somsak PanhaAbstract:The centipede genus Scolopendra in mainland Southeast Asia is reviewed taxonomically based on morphological characters, informed by a molecular phylogenetic analysis using sequences from three mitochondrial and nuclear genes (COI, 16S rRNA and 28S rRNA). Eight nominal species of Scolopendra, namely Scolopendra morsitans Linnaeus, 1758, Scolopendra subspinipes Leach, 1816, Scolopendra dehaani Brandt, 1840, Scolopendra multidens Newport, 1844, Scolopendra calcarata Porat, 1876, Scolopendra japonica Koch, 1878, Scolopendra pinguis Pocock, 1891, and Scolopendra dawydoffi Kronmuller, 2012, are redescribed together with some revision of type materials. Geographical variation in each species has been compiled with reference to samples that span their distribution ranges in Southeast Asia and some parts of neighbouring areas such as East Asia, the Indian Ocean, and Africa. Comparative study of traditional taxonomic characters from external morphology provides further information to distinguish some closely related species. Scolopendra cataracta Siriwut, Edgecombe & Panha, sp. n., is described from the southern part of Laos, with additional records in Thailand and Vietnam. The phylogenetic framework for Southeast Asian Scolopendra recognizes Scolopendra calcarata + Scolopendra pinguis, Scolopendra morsitans, and a Scolopendra subspinipes group that unites the other six species as the main clades. Within the Scolopendra subspinipes group, two monophyletic groups can be distinguished by having either slender or short, thick ultimate leg prefemora and different numbers of apical spines on the coxopleuron. Scolopendra arborea Lewis, 1982, is placed in subjective synonymy with Scolopendra dehaani. A survey of external morphology of the genital segments confirms its potential for improving species identification in Scolopendra. Some observations on biology and behaviour are recorded based on field surveys in this area.
-
the centipede genus Scolopendra in mainland southeast asia molecular phylogenetics geometric morphometrics and external morphology as tools for species delimitation
PLOS ONE, 2015Co-Authors: Warut Siriwut, Gregory D Edgecombe, Chirasak Sutcharit, Somsak PanhaAbstract:Seven Scolopendra species from the Southeast Asian mainland delimited based on standard external morphological characters represent monophyletic groups in phylogenetic trees inferred from concatenated sequences of three gene fragments (cytochrome c oxidase subunit 1, 16S rRNA and 28S rRNA) using Maximum likelihood and Bayesian inference. Geometric morphometric description of shape variation in the cephalic plate, forcipular coxosternite, and tergite of the ultimate leg-bearing segment provides additional criteria for distinguishing species. Colouration patterns in some Scolopendra species show a high degree of fit to phylogenetic trees at the population level. The most densely sampled species, Scolopendra dehaani Brandt, 1840, has three subclades with allopatric distributions in mainland SE Asia. The molecular phylogeny of S. pinguis Pocock, 1891, indicated ontogenetic colour variation among its populations. The taxonomic validation of S. dawydoffi Kronmuller, 2012, S. japonica Koch, 1878, and S. dehaani Brandt, 1840, each a former subspecies of S. subspinipes Leach, 1814 sensu Lewis, 2010, as full species was supported by molecular information and additional morphological data. Species delimitation in these taxonomically challenging animals is facilitated by an integrative approach that draws on both morphology and molecular phylogeny.
Lourival D Possani - One of the best experts on this subject based on the ideXlab platform.
-
proteomic characterization of the venom and transcriptomic analysis of the venomous gland from the mexican centipede Scolopendra viridis
Journal of Proteomics, 2014Co-Authors: Lidia Gonzalezmorales, Martha Pedrazaescalona, Elia Diegogarcia, Rita Restanocassulini, Cesar Vicente Ferreira Batista, Maria Del Carmen Gutierrez, Lourival D PossaniAbstract:Abstract This communication reports the results of proteomic, transcriptomic, biochemical and electrophysiological analysis of the soluble venom and venom glands of the Mexican centipede Scolopendra viridis Say (here thereafter abbreviated S. viridis). Separation of the soluble venom permitted to obtain 54 different fractions, from which a mass finger printing analysis permitted the identification of at least 86 components, where 70% of the molecules have low molecular masses. Two-dimensional electrophoretic separation of this venom revealed the presence of about forty proteins with molecular weights ranging from 17 to 58 kDa. The novo sequencing of 149 peptides obtained by LC–MS/MS from the 2D-gels showed the presence of proteins with amino acid sequences similar to several enzymes and venom allergens type 3. Furthermore, a total of 180 sequences were obtained from a cDNA library prepared with two venomous glands. From this, 155 sequences correspond to complete genes containing more than 200 base pairs each. Comparative sequence analyses of these sequences indicated the presence of different types of enzymes and toxin-like genes. Two proteins with molecular weights around 37,000 and 42,000 Da were shown to contain hyaluronidase activity. Electrophysiological assays performed with soluble venom show that it decreases mammalian sodium channel currents. Biological significance Animal venoms of Scolopendra species have been scarcely studied, although they have been reported to contain several bioactive compounds, some of which with potential therapeutic interest. The Mexican centipede S. viridis contains a powerful venom, capable of inflicting immediate effects on their preys. This communication is focused on the identification and description of a proteomic and transcriptomic analysis of the protein components of this venom. Several amino acid sequences similar to reported enzymes are the principal components in the S. viridis venom, but also a low number of toxins were identified. This knowledge should contribute to the understanding of the pharmacological effects caused by bites of this centipede species. This article is part of a Special Issue entitled: Proteomics, mass spectrometry and peptidomics, Cancun 2013. Guest Editors: Cesar Lopez-Camarillo, Victoria Pando-Robles and Bronwyn Jane Barkla.
-
a toxic fraction from Scolopendra venom increases the basal release of neurotransmitters in the ventral ganglia of crustaceans
Comparative Biochemistry and Physiology C-toxicology & Pharmacology, 2003Co-Authors: Maria Del Carmen Gutierrez, Carolina Abarca, Lourival D PossaniAbstract:Abstract A toxic fraction from centipede ( Scolopendra sp.) venom was tested in neurotransmitter release experiments. The venom was fractionated by DEAE-cellulose with a linear gradient from 20 mM to 1.0 M of ammonium acetate pH 4.7. Lethality tests were performed by injections into the third abdominal dorsolateral segment of sweet water crayfishes of the species Cambarellus cambarellus . Only fraction V (TF) was toxic. Analysis by SDS-PAGE showed that this fraction contains at least seven proteins. It induces an increase of basal gamma-amino butyric acid (GABA) and glutamate release from ventral abdominal ganglia of C. cambarellus. Assays conducted with this fraction in the presence of several drugs that affect ion channel function suggested that TF modifies membrane permeability by increasing basal release of neurotransmitters was very likely through sodium channels.
Lidia Gonzalezmorales - One of the best experts on this subject based on the ideXlab platform.
-
proteomic characterization of the venom and transcriptomic analysis of the venomous gland from the mexican centipede Scolopendra viridis
Journal of Proteomics, 2014Co-Authors: Lidia Gonzalezmorales, Martha Pedrazaescalona, Elia Diegogarcia, Rita Restanocassulini, Cesar Vicente Ferreira Batista, Maria Del Carmen Gutierrez, Lourival D PossaniAbstract:Abstract This communication reports the results of proteomic, transcriptomic, biochemical and electrophysiological analysis of the soluble venom and venom glands of the Mexican centipede Scolopendra viridis Say (here thereafter abbreviated S. viridis). Separation of the soluble venom permitted to obtain 54 different fractions, from which a mass finger printing analysis permitted the identification of at least 86 components, where 70% of the molecules have low molecular masses. Two-dimensional electrophoretic separation of this venom revealed the presence of about forty proteins with molecular weights ranging from 17 to 58 kDa. The novo sequencing of 149 peptides obtained by LC–MS/MS from the 2D-gels showed the presence of proteins with amino acid sequences similar to several enzymes and venom allergens type 3. Furthermore, a total of 180 sequences were obtained from a cDNA library prepared with two venomous glands. From this, 155 sequences correspond to complete genes containing more than 200 base pairs each. Comparative sequence analyses of these sequences indicated the presence of different types of enzymes and toxin-like genes. Two proteins with molecular weights around 37,000 and 42,000 Da were shown to contain hyaluronidase activity. Electrophysiological assays performed with soluble venom show that it decreases mammalian sodium channel currents. Biological significance Animal venoms of Scolopendra species have been scarcely studied, although they have been reported to contain several bioactive compounds, some of which with potential therapeutic interest. The Mexican centipede S. viridis contains a powerful venom, capable of inflicting immediate effects on their preys. This communication is focused on the identification and description of a proteomic and transcriptomic analysis of the protein components of this venom. Several amino acid sequences similar to reported enzymes are the principal components in the S. viridis venom, but also a low number of toxins were identified. This knowledge should contribute to the understanding of the pharmacological effects caused by bites of this centipede species. This article is part of a Special Issue entitled: Proteomics, mass spectrometry and peptidomics, Cancun 2013. Guest Editors: Cesar Lopez-Camarillo, Victoria Pando-Robles and Bronwyn Jane Barkla.
William K Hayes - One of the best experts on this subject based on the ideXlab platform.
-
variation in venom yield and protein concentration of the centipedes Scolopendra polymorpha and Scolopendra subspinipes
Toxicon, 2014Co-Authors: Allen M Cooper, David R Nelsen, William K HayesAbstract:Abstract Venom generally comprises a complex mixture of compounds representing a non-trivial metabolic expense. Accordingly, natural selection should fine-tune the amount of venom carried within an animal's venom gland(s). The venom supply of scolopendromorph centipedes likely influences their venom use and has implications for the severity of human envenomations, yet we understand very little about their venom yields and the factors influencing them. We investigated how size, specifically body length, influenced volume yield and protein concentration of electrically extracted venom in Scolopendra polymorpha and Scolopendra subspinipes . We also examined additional potential influences on yield in S. polymorpha , including relative forcipule size, relative mass, geographic origin (Arizona vs. California), sex, time in captivity, and milking history. Volume yield was linearly related to body length, and S. subspinipes yielded a larger length-specific volume than S. polymorpha . Body length and protein concentration were uncorrelated. When considering multiple influences on volume yield in S. polymorpha , the most important factor was body length, but yield was also positively associated with relative forcipule length and relative body mass. S. polymorpha from California yielded a greater volume of venom with a higher protein concentration than conspecifics from Arizona, all else being equal. Previously milked animals yielded less venom with a lower protein concentration. For both species, approximately two-thirds of extractable venom was expressed in the first two pulses, with remaining pulses yielding declining amounts, but venom protein concentration did not vary across pulses. Further study is necessary to ascertain the ecological significance of the factors influencing venom yield and how availability may influence venom use.