Self-Optimization

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 9696 Experts worldwide ranked by ideXlab platform

Eitan Altman - One of the best experts on this subject based on the ideXlab platform.

  • Virtual sectorization: Design and Self-Optimization
    IEEE Vehicular Technology Conference, 2015
    Co-Authors: Abdoulaye Tall, Zwi Altman, Eitan Altman
    Abstract:

    Virtual Sectorization (ViSn) aims at covering a confined area such as a traffic hot-spot using a narrow beam. The beam is generated by a remote antenna array located at- or close to the Base Station (BS). This paper develops the ViSn model and provides the guidelines for designing the Virtual Sector (ViS) antenna. In order to mitigate interference between the ViS and the traditional macro sector covering the rest of the area, a Dynamic Spectrum Allocation (DSA) algorithm that self-optimizes the frequency bandwidth split between the macro cell and the ViS is also proposed. The Self-Organizing Network (SON) algorithm is constructed to maximize the proportional fair utility of all the users throughputs. Numerical simulations show the interest in deploying ViSn, and the significant capacity gain brought about by the self-optimized bandwidth sharing with respect to a full reuse of the bandwidth by the ViS.

  • Self-organizing relays: Dimensioning, Self-Optimization, and learning
    IEEE Transactions on Network and Service Management, 2012
    Co-Authors: Richard Combes, Zwi Altman, Eitan Altman
    Abstract:

    Relay stations are an important component of heterogeneous networks introduced in the LTE-Advanced technology as a means to provide very high capacity and QoS all over the cell area. This paper develops a self-organizing network (SON) feature to optimally allocate resources between backhaul and station to mobile links. Static and dynamic resource sharing mechanisms are investigated. For stationary ergodic traffic we provide a queuing model to calculate the optimal resource sharing strategy and the maximal capacity of the network analytically. When traffic is not stationary, we propose a load balancing algorithm to adapt both the resource sharing and the zones covered by the relays based on measurements. Convergence to an optimal configuration is proven using stochastic approximation techniques. Self-optimizing dynamic resource allocation is tackled using a Markov Decision Process model. Stability in the infinite buffer case and blocking rate and file transfer time in the finite buffer case are considered. For a scalable solution with a large number of relays, a well-chosen parameterized family of policies is considered, to be used as expert knowledge. Finally, a model-free approach is shown in which the network can derive the optimal parameterized policy, and the convergence to a local optimum is proven.

Thomas Gries - One of the best experts on this subject based on the ideXlab platform.

  • integration of the vertical warp stop motion positioning in the model based self optimization of the weaving process
    The International Journal of Advanced Manufacturing Technology, 2017
    Co-Authors: Yvessimon Gloy, Frederik James Marie Cloppenburg, Thomas Gries
    Abstract:

    The warp tension is a critical variable of the weaving process. If the warp tension is too high or too low, the weaving process will be interrupted. In order to find a suitable setting for the weaving machine, the experience of the operator is needed. Self-Optimization routines can support the operator in finding optimal settings. Within this paper, the model-based Self-Optimization of the weaving process developed at Institut fur Textiltechnik der RWTH Aachen University is presented. The Self-Optimization routine uses an automatic design of experiment to generate data for a full quadratic regression model of the characteristic values of the warp tension. Three weighted quality criteria are used to optimize the machine settings within given boundaries. An improvement is proposed by integrating the vertical warp stop motion position as a factor with high impact on the warp tension. The vertical warp stop motion position is automated and integrated into the optimization process. The adjusted routine is validated on an air jet weaving machine. The test results show that the integration of the warp stop motion position into a Self-Optimization routine leads to a 35% reduction of tension in the warp yarns. Compared to the existing routine, the integration of the warp stop motion position leads to a 23% higher effect on the warp tension as the target value of the optimization. The statistical validation shows that the quality of the used regression model is high. The described system also reduces the setup time of a weaving machine. Economically, the improvements mean a reduction of production costs by 22%, when producing small lot sizes. The system therefore contributes to the competitiveness of weaving mills in high-wage countries.

  • Applying Multi-objective Optimization Algorithms to a Weaving Machine as Cyber-Physical Production System
    Industrial Internet of Things, 2016
    Co-Authors: Marco Saggiomo, Yvessimon Gloy, Thomas Gries
    Abstract:

    Real (physical) objects melt together with information-processing (virtual) objects to create Cyber-Physical Production Systems (CPPS). Through embedding of intelligent, self-optimizing CPPS in process chains, productivity of manufacturing companies and quality of goods can be increased. Textile producers especially in high-wage countries have to cope with the trend towards smaller lot sizes in combination with the demand for increasing product variations. One possibility to cope with these changing market trends consists in manufacturing with CPPS and cognitive machinery. This chapter presents a method for multi-objective Self-Optimization of the weaving process. Multi-objective Self-Optimization assists the operator in setting weaving machine parameters according to objective functions. The implementation of a Self-Optimization routine in a software-based Programmable Logic Controller (soft-PLC) is presented. The routine enables a weaving machine to calculate the optimal parameter settings autonomously. Set-up time is reduced by 75 % and objective functions are improved by at least 14 % compared to manual machine settings.

  • Reduction of the Weaving Process Set-up Time through Multi-Objective Self-Optimization
    Journal of Textile Science & Engineering, 2016
    Co-Authors: Marco Saggiomo, Yvessimon Gloy, Thomas Gries
    Abstract:

    Real (physical) objects melt together with information-processing (virtual) objects. These blends are called Cyber-Physical Production Systems (CPPS). The German government identifies this technological revolution as the fourth step of industrialization (Industry 4.0). Through embedding of intelligent, self-optimizing CPPS in process chains, productivity of manufacturing companies and quality of goods can be increased. Textile producers especially in high-wage countries have to cope with the trend towards smaller lot sizes in combination with the demand for increasing product variations. One possibility to cope with these changing market trends consists in manufacturing with CPPS and cognitive machinery. This paper focuses on woven fabric production and presents a method for multiobjective Self-Optimization of the weaving process. Multi-objective Self-Optimization assists the operator in setting weaving machine parameters according to the objective functions warp tension, energy consumption and fabric quality. Individual preferences of customers and plant management are integrated into the optimization routine. The implementation of desirability functions together with Nelder/Mead algorithm in a software-based Programmable Logic Controller (soft-PLC) is presented. The Self-Optimization routine enables a weaving machine to calculate the optimal parameter settings autonomously. Set-up time is reduced by 75% and objective functions are improved by at least 14% compared to manual machine settings.

  • ICIT - Weaving machine as cyber-physical production system: Multi-objective Self-Optimization of the weaving process
    2016 IEEE International Conference on Industrial Technology (ICIT), 2016
    Co-Authors: Marco Saggiomo, Yvessimon Gloy, M. Kemper, Thomas Gries
    Abstract:

    Real (physical) objects melt together with information-processing (virtual) objects. These blends are called Cyber-Physical Production Systems (CPPS). The German government identifies this technological revolution as the fourth step of industrialization (Industry 4.0). Through embedding of intelligent, self-optimizing CPPS in process chains, productivity of manufacturing companies and quality of goods can be increased. Textile producers especially in high-wage countries have to cope with the trend towards smaller lot sizes in combination with the demand for increasing product variations. One possibility to cope with these changing market trends consists in manufacturing with CPPS and cognitive machinery. This paper focuses on woven fabric production and presents a method for multi-objective Self-Optimization of the weaving process. Multi-objective Self-Optimization assists the operator in setting weaving machine parameters according to the objective functions warp tension, energy consumption and fabric quality. Individual preferences of customers and plant management are integrated into the optimization routine. The implementation of desirability functions together with Nelder/Mead algorithm in a software-based Programmable Logic Controller (soft-PLC) is presented. The Self-Optimization routine enables a weaving machine to calculate the optimal parameter settings autonomously. Set-up time is reduced by 75 % and objective functions are improved by at least 14 % compared to manual machine settings.

Abdoulaye Tall - One of the best experts on this subject based on the ideXlab platform.

  • Optimization and Self-Optimization in LTE-Advanced Networks
    2015
    Co-Authors: Abdoulaye Tall
    Abstract:

    The mobile network of Orange in France comprises more than 100 000 2G, 3G and 4G antennas with severalfrequency bands, not to mention many femto-cells for deep-indoor coverage. These numbers will continue toincrease in order to address the customers’ exponentially increasing need for mobile data. This is an illustrationof the challenge faced by the mobile operators for operating such a complex network with low OperationalExpenditures (OPEX) in order to stay competitive. This thesis is about leveraging the Self-Organizing Network(SON) concept to reduce this complexity by automating repetitive or complex tasks. We specifically proposeautomatic optimization algorithms for scenarios related to network densification using either small cells orActive Antenna Systems (AASs) used for Vertical Sectorization (VeSn), Virtual Sectorization (ViSn) and multilevelbeamforming. Problems such as load balancing with limited-capacity backhaul and interference coordination eitherin time-domain (eICIC) or in frequency-domain are tackled. We also propose optimal activation algorithms forVeSn and ViSn when their activation is not always beneficial. We make use of results from stochastic approximationand convex optimization for the mathematical formulation of the problems and their solutions. We also proposea generic methodology for the coordination of multiple SON algorithms running in parallel using results fromconcave game theory and Linear Matrix Inequality (LMI)-constrained optimization.

  • Virtual sectorization: Design and Self-Optimization
    IEEE Vehicular Technology Conference, 2015
    Co-Authors: Abdoulaye Tall, Zwi Altman, Eitan Altman
    Abstract:

    Virtual Sectorization (ViSn) aims at covering a confined area such as a traffic hot-spot using a narrow beam. The beam is generated by a remote antenna array located at- or close to the Base Station (BS). This paper develops the ViSn model and provides the guidelines for designing the Virtual Sector (ViS) antenna. In order to mitigate interference between the ViS and the traditional macro sector covering the rest of the area, a Dynamic Spectrum Allocation (DSA) algorithm that self-optimizes the frequency bandwidth split between the macro cell and the ViS is also proposed. The Self-Organizing Network (SON) algorithm is constructed to maximize the proportional fair utility of all the users throughputs. Numerical simulations show the interest in deploying ViSn, and the significant capacity gain brought about by the self-optimized bandwidth sharing with respect to a full reuse of the bandwidth by the ViS.

Beth A Lindquist - One of the best experts on this subject based on the ideXlab platform.

  • the role of pressure in inverse design for assembly
    Journal of Chemical Physics, 2019
    Co-Authors: Beth A Lindquist, Ryan B Jadrich, Michael P Howard, Thomas M. Truskett
    Abstract:

    Isotropic pairwise interactions that promote the self-assembly of complex particle morphologies have been discovered by inverse design strategies derived from the molecular coarse-graining literature. While such approaches provide an avenue to reproduce structural correlations, thermodynamic quantities such as the pressure have typically not been considered in self-assembly applications. In this work, we demonstrate that relative entropy optimization can be used to discover potentials that self-assemble into targeted cluster morphologies with a prescribed pressure when the iterative simulations are performed in the isothermal-isobaric ensemble. The benefits of this approach are twofold. First, the structure and the thermodynamics associated with the optimized interaction can be controlled simultaneously. Second, by varying the pressure in the optimization, a family of interparticle potentials that all self-assemble the same structure can be systematically discovered, allowing for a deeper understanding of self-assembly of a given target structure and providing multiple assembly routes for its realization. Selecting an appropriate simulation ensemble to control the thermodynamic properties of interest is a general design strategy that could also be used to discover interaction potentials that self-assemble structures having, for example, a specified chemical potential.Isotropic pairwise interactions that promote the self-assembly of complex particle morphologies have been discovered by inverse design strategies derived from the molecular coarse-graining literature. While such approaches provide an avenue to reproduce structural correlations, thermodynamic quantities such as the pressure have typically not been considered in self-assembly applications. In this work, we demonstrate that relative entropy optimization can be used to discover potentials that self-assemble into targeted cluster morphologies with a prescribed pressure when the iterative simulations are performed in the isothermal-isobaric ensemble. The benefits of this approach are twofold. First, the structure and the thermodynamics associated with the optimized interaction can be controlled simultaneously. Second, by varying the pressure in the optimization, a family of interparticle potentials that all self-assemble the same structure can be systematically discovered, allowing for a deeper understanding of...

  • the role of pressure in inverse design for assembly
    arXiv: Statistical Mechanics, 2019
    Co-Authors: Beth A Lindquist, Ryan B Jadrich, Michael P Howard, Thomas M. Truskett
    Abstract:

    Isotropic pairwise interactions that promote the self assembly of complex particle morphologies have been discovered by inverse design strategies derived from the molecular coarse-graining literature. While such approaches provide an avenue to reproduce structural correlations, thermodynamic quantities such as the pressure have typically not been considered in self-assembly applications. In this work, we demonstrate that relative entropy optimization can be used to discover potentials that self-assemble into targeted cluster morphologies with a prescribed pressure when the iterative simulations are performed in the isothermal-isobaric ensemble. By tuning the pressure in the optimization, we generate a family of simple pair potentials that all self-assemble the same structure. Selecting an appropriate simulation ensemble to control the thermodynamic properties of interest is a general design strategy that could also be used to discover interaction potentials that self-assemble structures having, for example, a specified chemical potential.

Paul W K Rothemund - One of the best experts on this subject based on the ideXlab platform.

  • combinatorial optimization problems in self assembly
    Symposium on the Theory of Computing, 2002
    Co-Authors: Len Adleman, Qi Cheng, Ashish Goel, Mingdeh A Huang, David Kempe, Pablo Moisset De Espanes, Paul W K Rothemund
    Abstract:

    Self-assembly is the ubiquitous process by which simple objects autonomously assemble into intricate complexes. It has been suggested that intricate self-assembly processes will ultimately be used in circuit fabrication, nano-robotics, DNA computation, and amorphous computing. In this paper, we study two combinatorial optimization problems related to efficient self-assembly of shapes in the Tile Assembly Model of self-assembly proposed by Rothemund and Winfree [18]. The first is the Minimum Tile Set Problem, where the goal is to find the smallest tile system that uniquely produces a given shape. The second is the Tile Concentrations Problem, where the goal is to decide on the relative concentrations of different types of tiles so that a tile system assembles as quickly as possible. The first problem is akin to finding optimum program size, and the second to finding optimum running time for a "program" to assemble the shape.Self-assembly is the ubiquitous process by which simple objects autonomously assemble into intricate complexes. It has been suggested that intricate self-assembly processes will ultimately be used in circuit fabrication, nano-robotics, DNA computation, and amorphous computing. In this paper, we study two combinatorial optimization problems related to efficient self-assembly of shapes in the Tile Assembly Model of self-assembly proposed by Rothemund and Winfree [18]. The first is the Minimum Tile Set Problem, where the goal is to find the smallest tile system that uniquely produces a given shape. The second is the Tile Concentrations Problem, where the goal is to decide on the relative concentrations of different types of tiles so that a tile system assembles as quickly as possible. The first problem is akin to finding optimum program size, and the second to finding optimum running time for a "program" to assemble the shape.We prove that the first problem is NP-complete in general, and polynomial time solvable on trees and squares. In order to prove that the problem is in NP, we present a polynomial time algorithm to verify whether a given tile system uniquely produces a given shape. This algorithm is analogous to a program verifier for traditional computational systems, and may well be of independent interest. For the second problem, we present a polynomial time $O(\log n)$-approximation algorithm that works for a large class of tile systems that we call partial order systems.