Self-Reference

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 8605788 Experts worldwide ranked by ideXlab platform

Murali Naidu - One of the best experts on this subject based on the ideXlab platform.

  • methanolic extract of mitragyna speciosa korth leaf inhibits ethanol seeking behaviour in mice involvement of antidopaminergic mechanism
    Metabolic Brain Disease, 2019
    Co-Authors: Kamini Vijeepallam, Vijayapandi Pandy, Dharmani Devi Murugan, Murali Naidu
    Abstract:

    In the current study, the effect of methanolic extract of Mitragyna speciosa leaf (MMS) against the rewarding and reinforcing properties of ethanol using a mouse model of conditioned place preference (CPP) and runway model of drug self-administration was studied. Subsequently, the effect of MMS on dopamine level in the nucleus accumbens (NAc) of the mouse brain was further investigated. From the data obtained, MMS (50 and 75 mg/kg, p.o.) significantly reversed the ethanol-place preference in mice, which is similar to the effect observed in the reference drugs acamprosate (300 mg/kg, p.o.) and clozapine (1 mg/kg, p.o.) treatment groups in CPP test. Likewise, the escalating doses of ethanol-conditioned mice reduced the runtime to reach goal box, infers the positive reinforcing effects of alcohol. Interestingly, MMS (50, 75 and 100 mg/kg, p.o.) significantly prolonged the runtime in ethanol-conditioned mice. Besides, MMS (50 and 75 mg/kg, p.o.) and reference drugs; acamprosate (300 mg/kg, p.o.) and clozapine (1 mg/kg, p.o.) treated mice significantly decreased the alcohol-induced elevated dopamine level in the NAc region of the brain. Overall, this study provides first evidence that MMS inhibits ethanol seeking behaviour in mice. Based on these findings, we suggest that Mitragyna speciosa may well be utilized for novel drug development to combat alcohol dependence.

Lanxiang Sun - One of the best experts on this subject based on the ideXlab platform.

  • correction of self absorption effect in calibration free laser induced breakdown spectroscopy by an internal reference method
    Talanta, 2009
    Co-Authors: Lanxiang Sun
    Abstract:

    A simplified procedure for correcting self-absorption effect was proposed in calibration-free laser-induced breakdown spectroscopy (CF-LIBS). In typical LIBS measurement conditions, the plasma produced is often optically thick, especially for the strong lines of major elements. The selection of self-absorption lines destroys the performance of CF-LIBS, and the familiar correction method based on the curve of growth is complex in implementation. The procedure we proposed, named internal reference for self-absorption correction (IRSAC), first chose an internal reference line for each species, then compared other spectral line intensity of the same species with the reference line to estimate the self-absorption degrees of other spectral lines, and finally achieved an optimal correction by a regressive algorithm. The self-absorption effect of the selected reference line can be ignored, since the reference line with high excitation energy of the upper level is slightly affected by the self-absorption. Through the IRSAC method, the points on the Boltzmann plot become more regular, and the evaluations of the plasma temperature and material composition are more accurate than the basic CF-LIBS.

Kamini Vijeepallam - One of the best experts on this subject based on the ideXlab platform.

  • methanolic extract of mitragyna speciosa korth leaf inhibits ethanol seeking behaviour in mice involvement of antidopaminergic mechanism
    Metabolic Brain Disease, 2019
    Co-Authors: Kamini Vijeepallam, Vijayapandi Pandy, Dharmani Devi Murugan, Murali Naidu
    Abstract:

    In the current study, the effect of methanolic extract of Mitragyna speciosa leaf (MMS) against the rewarding and reinforcing properties of ethanol using a mouse model of conditioned place preference (CPP) and runway model of drug self-administration was studied. Subsequently, the effect of MMS on dopamine level in the nucleus accumbens (NAc) of the mouse brain was further investigated. From the data obtained, MMS (50 and 75 mg/kg, p.o.) significantly reversed the ethanol-place preference in mice, which is similar to the effect observed in the reference drugs acamprosate (300 mg/kg, p.o.) and clozapine (1 mg/kg, p.o.) treatment groups in CPP test. Likewise, the escalating doses of ethanol-conditioned mice reduced the runtime to reach goal box, infers the positive reinforcing effects of alcohol. Interestingly, MMS (50, 75 and 100 mg/kg, p.o.) significantly prolonged the runtime in ethanol-conditioned mice. Besides, MMS (50 and 75 mg/kg, p.o.) and reference drugs; acamprosate (300 mg/kg, p.o.) and clozapine (1 mg/kg, p.o.) treated mice significantly decreased the alcohol-induced elevated dopamine level in the NAc region of the brain. Overall, this study provides first evidence that MMS inhibits ethanol seeking behaviour in mice. Based on these findings, we suggest that Mitragyna speciosa may well be utilized for novel drug development to combat alcohol dependence.

Kang Wang - One of the best experts on this subject based on the ideXlab platform.

  • a method for improving the accuracy of calibration free laser induced breakdown spectroscopy cf libs using determined plasma temperature by genetic algorithm ga
    Journal of Analytical Atomic Spectrometry, 2015
    Co-Authors: Juan Dong, Long Liang, Jiao Wei, Hongsheng Tang, Tianlong Zhang, Xiaofeng Yang, Kang Wang
    Abstract:

    Accuracy is still a challenge for classical calibration-free laser-induced breakdown spectroscopic (CF-LIBS) quantitative analysis since absolute theoretical calculation and mathematical models cannot compensate for the self-absorption effect and plasma temperature variability. The aim of this research is to obtain a more accurate plasma temperature which contributes to the precise determination of the elemental composition of unknown samples for CF-LIBS. Herein, an internal reference-external standard with iteration correction (IRESIC) method is proposed to correct for the self-absorption effect and plasma temperature in CF-LIBS based on an internal reference line and one standard sample. The spectral intensities of each species are corrected by an internal reference line via the iteration procedure, and the internal reference line suffers from a negligible self-absorption effect for self-absorption correction. Furthermore, one standard sample matrix-matched with the unknown samples along with the genetic algorithm (GA) is utilized to simulate the accurate plasma temperature of the unknown samples. It is worth mentioning that the GA is used for plasma temperature correction through iteration correction for the first time in CF-LIBS. The proposed method demonstrates a significant improvement in accuracy compared with the classical CF-LIBS in the quantitative analysis of aluminum-bronze alloy samples due to the integrated merits of internal reference line usage and accurate plasma temperature evaluation.

Vijayapandi Pandy - One of the best experts on this subject based on the ideXlab platform.

  • methanolic extract of mitragyna speciosa korth leaf inhibits ethanol seeking behaviour in mice involvement of antidopaminergic mechanism
    Metabolic Brain Disease, 2019
    Co-Authors: Kamini Vijeepallam, Vijayapandi Pandy, Dharmani Devi Murugan, Murali Naidu
    Abstract:

    In the current study, the effect of methanolic extract of Mitragyna speciosa leaf (MMS) against the rewarding and reinforcing properties of ethanol using a mouse model of conditioned place preference (CPP) and runway model of drug self-administration was studied. Subsequently, the effect of MMS on dopamine level in the nucleus accumbens (NAc) of the mouse brain was further investigated. From the data obtained, MMS (50 and 75 mg/kg, p.o.) significantly reversed the ethanol-place preference in mice, which is similar to the effect observed in the reference drugs acamprosate (300 mg/kg, p.o.) and clozapine (1 mg/kg, p.o.) treatment groups in CPP test. Likewise, the escalating doses of ethanol-conditioned mice reduced the runtime to reach goal box, infers the positive reinforcing effects of alcohol. Interestingly, MMS (50, 75 and 100 mg/kg, p.o.) significantly prolonged the runtime in ethanol-conditioned mice. Besides, MMS (50 and 75 mg/kg, p.o.) and reference drugs; acamprosate (300 mg/kg, p.o.) and clozapine (1 mg/kg, p.o.) treated mice significantly decreased the alcohol-induced elevated dopamine level in the NAc region of the brain. Overall, this study provides first evidence that MMS inhibits ethanol seeking behaviour in mice. Based on these findings, we suggest that Mitragyna speciosa may well be utilized for novel drug development to combat alcohol dependence.