Separation Take Place

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 8565 Experts worldwide ranked by ideXlab platform

Xin Xiao - One of the best experts on this subject based on the ideXlab platform.

  • optimal design and effective control of the tert amyl methyl ether production process using an integrated reactive dividing wall and pressure swing columns
    Industrial & Engineering Chemistry Research, 2017
    Co-Authors: Ao Yang, Weifeng Shen, Lichun Dong, Xin Xiao
    Abstract:

    Design of the tert-amyl methyl ether (TAME) production process has received much attention because TAME is an important oxygenated gasoline additive with much fewer environmental and health issues than methyl tert-butyl ether. Although a reactive dividing wall column where reaction and Separation Take Place in one vessel has been developed with less capital and operating cost, little work on its application to TAME production has been reported. In this paper, we propose a new overall procedure for optimal design of the TAME production process through an integrated reactive dividing wall and pressure swing columns, which includes screening of the best dividing wall configuration, thermodynamic feasible insight, and process simulation and optimization using the sensitivity analysis tool in Aspen Plus. The computational results demonstrate that the optimal design of the TAME production process through an integrated reactive dividing wall and pressure swing column is successfully obtained to achieve desired T...

  • Optimal Design and Effective Control of the tert-Amyl Methyl Ether Production Process Using an Integrated Reactive Dividing Wall and Pressure Swing Columns
    2017
    Co-Authors: Ao Yang, Weifeng Shen, Lichun Dong, Xin Xiao
    Abstract:

    Design of the tert-amyl methyl ether (TAME) production process has received much attention because TAME is an important oxygenated gasoline additive with much fewer environmental and health issues than methyl tert-butyl ether. Although a reactive dividing wall column where reaction and Separation Take Place in one vessel has been developed with less capital and operating cost, little work on its application to TAME production has been reported. In this paper, we propose a new overall procedure for optimal design of the TAME production process through an integrated reactive dividing wall and pressure swing columns, which includes screening of the best dividing wall configuration, thermodynamic feasible insight, and process simulation and optimization using the sensitivity analysis tool in Aspen Plus. The computational results demonstrate that the optimal design of the TAME production process through an integrated reactive dividing wall and pressure swing column is successfully obtained to achieve desired TAME purity of 99.958 mol %, significantly reducing the total annualized cost by 43.58% and decreasing the exergy loss by 48.24% compared to the existing TAME production process using reactive distillation. Finally, an effective control strategy including tray temperature control is proposed to ensure the operating conditions are well controlled at or close to their set points in a desired time when disturbances occur

Ao Yang - One of the best experts on this subject based on the ideXlab platform.

  • optimal design and effective control of the tert amyl methyl ether production process using an integrated reactive dividing wall and pressure swing columns
    Industrial & Engineering Chemistry Research, 2017
    Co-Authors: Ao Yang, Weifeng Shen, Lichun Dong, Xin Xiao
    Abstract:

    Design of the tert-amyl methyl ether (TAME) production process has received much attention because TAME is an important oxygenated gasoline additive with much fewer environmental and health issues than methyl tert-butyl ether. Although a reactive dividing wall column where reaction and Separation Take Place in one vessel has been developed with less capital and operating cost, little work on its application to TAME production has been reported. In this paper, we propose a new overall procedure for optimal design of the TAME production process through an integrated reactive dividing wall and pressure swing columns, which includes screening of the best dividing wall configuration, thermodynamic feasible insight, and process simulation and optimization using the sensitivity analysis tool in Aspen Plus. The computational results demonstrate that the optimal design of the TAME production process through an integrated reactive dividing wall and pressure swing column is successfully obtained to achieve desired T...

  • Optimal Design and Effective Control of the tert-Amyl Methyl Ether Production Process Using an Integrated Reactive Dividing Wall and Pressure Swing Columns
    2017
    Co-Authors: Ao Yang, Weifeng Shen, Lichun Dong, Xin Xiao
    Abstract:

    Design of the tert-amyl methyl ether (TAME) production process has received much attention because TAME is an important oxygenated gasoline additive with much fewer environmental and health issues than methyl tert-butyl ether. Although a reactive dividing wall column where reaction and Separation Take Place in one vessel has been developed with less capital and operating cost, little work on its application to TAME production has been reported. In this paper, we propose a new overall procedure for optimal design of the TAME production process through an integrated reactive dividing wall and pressure swing columns, which includes screening of the best dividing wall configuration, thermodynamic feasible insight, and process simulation and optimization using the sensitivity analysis tool in Aspen Plus. The computational results demonstrate that the optimal design of the TAME production process through an integrated reactive dividing wall and pressure swing column is successfully obtained to achieve desired TAME purity of 99.958 mol %, significantly reducing the total annualized cost by 43.58% and decreasing the exergy loss by 48.24% compared to the existing TAME production process using reactive distillation. Finally, an effective control strategy including tray temperature control is proposed to ensure the operating conditions are well controlled at or close to their set points in a desired time when disturbances occur

  • Optimal Design and Effective Control of the tent-Amyl Methyl Ether Production Process Using an Integrated Reactive Dividing Wall and Pressure Swing Columns
    'American Chemical Society (ACS)', 2017
    Co-Authors: Ao Yang, Lv Liping, Shen Weifeng, Dong Lichun, Li Jie, Xiao Xin
    Abstract:

    Design of the tert-amyl methyl ether (TAME) production process has received much attention because TAME is an important oxygenated gasoline additive with much fewer environmental and health issues than methyl tert-butyl ether. Although a reactive dividing wall column where reaction and Separation Take Place in one vessel has been developed with less capital and operating cost, little work on its application to TAME production has been reported. In this paper, we propose a new overall procedure for optimal design of the TAME production process through an integrated reactive dividing wall and pressure swing columns, which includes screening of the best dividing wall configuration, thermodynamic feasible insight, and process simulation and optimization using the sensitivity analysis tool in Aspen Plus. The computational results demonstrate that the optimal design of the TAME production process through an integrated reactive dividing wall and pressure swing column is successfully obtained to achieve desired TAME purity of 99.958 mol %, significantly reducing the total annualized cost by 43.58% and decreasing the exergy loss by 48.24% compared to the existing TAME production process using reactive distillation. Finally, an effective control strategy including tray temperature control is proposed to ensure the operating conditions are well controlled at or close to their set points in a desired time when disturbances occur.

Lichun Dong - One of the best experts on this subject based on the ideXlab platform.

  • optimal design and effective control of the tert amyl methyl ether production process using an integrated reactive dividing wall and pressure swing columns
    Industrial & Engineering Chemistry Research, 2017
    Co-Authors: Ao Yang, Weifeng Shen, Lichun Dong, Xin Xiao
    Abstract:

    Design of the tert-amyl methyl ether (TAME) production process has received much attention because TAME is an important oxygenated gasoline additive with much fewer environmental and health issues than methyl tert-butyl ether. Although a reactive dividing wall column where reaction and Separation Take Place in one vessel has been developed with less capital and operating cost, little work on its application to TAME production has been reported. In this paper, we propose a new overall procedure for optimal design of the TAME production process through an integrated reactive dividing wall and pressure swing columns, which includes screening of the best dividing wall configuration, thermodynamic feasible insight, and process simulation and optimization using the sensitivity analysis tool in Aspen Plus. The computational results demonstrate that the optimal design of the TAME production process through an integrated reactive dividing wall and pressure swing column is successfully obtained to achieve desired T...

  • Optimal Design and Effective Control of the tert-Amyl Methyl Ether Production Process Using an Integrated Reactive Dividing Wall and Pressure Swing Columns
    2017
    Co-Authors: Ao Yang, Weifeng Shen, Lichun Dong, Xin Xiao
    Abstract:

    Design of the tert-amyl methyl ether (TAME) production process has received much attention because TAME is an important oxygenated gasoline additive with much fewer environmental and health issues than methyl tert-butyl ether. Although a reactive dividing wall column where reaction and Separation Take Place in one vessel has been developed with less capital and operating cost, little work on its application to TAME production has been reported. In this paper, we propose a new overall procedure for optimal design of the TAME production process through an integrated reactive dividing wall and pressure swing columns, which includes screening of the best dividing wall configuration, thermodynamic feasible insight, and process simulation and optimization using the sensitivity analysis tool in Aspen Plus. The computational results demonstrate that the optimal design of the TAME production process through an integrated reactive dividing wall and pressure swing column is successfully obtained to achieve desired TAME purity of 99.958 mol %, significantly reducing the total annualized cost by 43.58% and decreasing the exergy loss by 48.24% compared to the existing TAME production process using reactive distillation. Finally, an effective control strategy including tray temperature control is proposed to ensure the operating conditions are well controlled at or close to their set points in a desired time when disturbances occur

Weifeng Shen - One of the best experts on this subject based on the ideXlab platform.

  • optimal design and effective control of the tert amyl methyl ether production process using an integrated reactive dividing wall and pressure swing columns
    Industrial & Engineering Chemistry Research, 2017
    Co-Authors: Ao Yang, Weifeng Shen, Lichun Dong, Xin Xiao
    Abstract:

    Design of the tert-amyl methyl ether (TAME) production process has received much attention because TAME is an important oxygenated gasoline additive with much fewer environmental and health issues than methyl tert-butyl ether. Although a reactive dividing wall column where reaction and Separation Take Place in one vessel has been developed with less capital and operating cost, little work on its application to TAME production has been reported. In this paper, we propose a new overall procedure for optimal design of the TAME production process through an integrated reactive dividing wall and pressure swing columns, which includes screening of the best dividing wall configuration, thermodynamic feasible insight, and process simulation and optimization using the sensitivity analysis tool in Aspen Plus. The computational results demonstrate that the optimal design of the TAME production process through an integrated reactive dividing wall and pressure swing column is successfully obtained to achieve desired T...

  • Optimal Design and Effective Control of the tert-Amyl Methyl Ether Production Process Using an Integrated Reactive Dividing Wall and Pressure Swing Columns
    2017
    Co-Authors: Ao Yang, Weifeng Shen, Lichun Dong, Xin Xiao
    Abstract:

    Design of the tert-amyl methyl ether (TAME) production process has received much attention because TAME is an important oxygenated gasoline additive with much fewer environmental and health issues than methyl tert-butyl ether. Although a reactive dividing wall column where reaction and Separation Take Place in one vessel has been developed with less capital and operating cost, little work on its application to TAME production has been reported. In this paper, we propose a new overall procedure for optimal design of the TAME production process through an integrated reactive dividing wall and pressure swing columns, which includes screening of the best dividing wall configuration, thermodynamic feasible insight, and process simulation and optimization using the sensitivity analysis tool in Aspen Plus. The computational results demonstrate that the optimal design of the TAME production process through an integrated reactive dividing wall and pressure swing column is successfully obtained to achieve desired TAME purity of 99.958 mol %, significantly reducing the total annualized cost by 43.58% and decreasing the exergy loss by 48.24% compared to the existing TAME production process using reactive distillation. Finally, an effective control strategy including tray temperature control is proposed to ensure the operating conditions are well controlled at or close to their set points in a desired time when disturbances occur

Xiao Xin - One of the best experts on this subject based on the ideXlab platform.

  • Optimal Design and Effective Control of the tent-Amyl Methyl Ether Production Process Using an Integrated Reactive Dividing Wall and Pressure Swing Columns
    'American Chemical Society (ACS)', 2017
    Co-Authors: Ao Yang, Lv Liping, Shen Weifeng, Dong Lichun, Li Jie, Xiao Xin
    Abstract:

    Design of the tert-amyl methyl ether (TAME) production process has received much attention because TAME is an important oxygenated gasoline additive with much fewer environmental and health issues than methyl tert-butyl ether. Although a reactive dividing wall column where reaction and Separation Take Place in one vessel has been developed with less capital and operating cost, little work on its application to TAME production has been reported. In this paper, we propose a new overall procedure for optimal design of the TAME production process through an integrated reactive dividing wall and pressure swing columns, which includes screening of the best dividing wall configuration, thermodynamic feasible insight, and process simulation and optimization using the sensitivity analysis tool in Aspen Plus. The computational results demonstrate that the optimal design of the TAME production process through an integrated reactive dividing wall and pressure swing column is successfully obtained to achieve desired TAME purity of 99.958 mol %, significantly reducing the total annualized cost by 43.58% and decreasing the exergy loss by 48.24% compared to the existing TAME production process using reactive distillation. Finally, an effective control strategy including tray temperature control is proposed to ensure the operating conditions are well controlled at or close to their set points in a desired time when disturbances occur.