Slabs

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 76956 Experts worldwide ranked by ideXlab platform

Rodriguez Bocanegra, Jenny Isabel - One of the best experts on this subject based on the ideXlab platform.

  • Influencia del empotramiento de tuberías sobre el comportamiento estructural de losas aligeradas
    'Universidad Privada Antenor Orrego', 2017
    Co-Authors: Angulo Ruiz, Elizabeth Cecilia, Rodriguez Bocanegra, Jenny Isabel
    Abstract:

    In the following research paper, named: ""INFLUENCE OF THE EMBEDDING DUCTS OVER THE STRUCTURAL BEHAVIOR OF THE CORE Slabs"", we will explain the necessary caution to be taken when the core Slabs have drain pipes. The aim of this research is to observe and analyze the structural behavior of a core slab without pipe and another one that is fitting a concrete cover slab. For this work we developed prototypes of core Slabs with the appropriate dimensions to be able to fit them into the craft machine, since there is no a standard machine for the tests of this core Slabs. They were adapted by doing a test in which the deformation and the power of the core Slabs prototypes were measured. The core Slabs prototypes that we are researching are: core Slabs without pipe, core Slabs with pipe in perpendicular to the joists, core Slabs with pipe in parallel to the joists and finally core Slabs with pipe in parallel to the joists wrapped to the wire number 16. All these core Slabs were made with a concrete FCK 210, since this strengh is used in the existing buildings.En el siguiente trabajo de investigación, titulado: “INFLUENCIA DEL EMPOTRAMIENTO DE TUBERIAS SOBRE EL COMPORTAMIENTO ESTRUCTURAL DE LOSAS ALIGERADAS”, expondremos el importante cuidado que se debe de tener cuando la losa aligerada presenta tubería de desagüe. El objetivo principal de esta investigación es poder observar y analizar el comportamiento estructural que presenta una losa aligerada sin tubería con otra losa aligerada que presenta tubería embebida en concreto. Para lo cual se desarrollaron probetas de losas con las dimensiones adecuadas para que pudieran ingresar en la máquina artesanal existente, ya que no existe ninguna normal para los ensayos de losas aligeradas, se adecuo, realizando un ensayo en la cual se midió la deformación de los probetas de losas y a su vez la fuerza que se aplicó a cada losa. Las probetas de losas aligeradas que desarrollamos en la siguiente investigación son: losas aligeradas sin tubería, losas aligeradas con tubería perpendicular a las viguetas, losas aligeradas con tubería paralelas a las viguetas y por último losas aligeradas con tubería perpendicular a las viguetas enrolladas con alambre N° 16. Todas estas losas se elaboraron con un concreto f’c 210 kg/cm 2 ya que mayormente en las edificaciones de nuestro medio se usan esta resistencia

  • Influencia del empotramiento de tuberías sobre el comportamiento estructural de losas aligeradas
    Universidad Privada Antenor Orrego - UPAO, 2017
    Co-Authors: Angulo Ruiz, Elizabeth Cecilia, Rodriguez Bocanegra, Jenny Isabel
    Abstract:

    En el siguiente trabajo de investigación, titulado: “INFLUENCIA DEL EMPOTRAMIENTO DE TUBERIAS SOBRE EL COMPORTAMIENTO ESTRUCTURAL DE LOSAS ALIGERADAS”, expondremos el importante cuidado que se debe de tener cuando la losa aligerada presenta tubería de desagüe. El objetivo principal de esta investigación es poder observar y analizar el comportamiento estructural que presenta una losa aligerada sin tubería con otra losa aligerada que presenta tubería embebida en concreto. Para lo cual se desarrollaron probetas de losas con las dimensiones adecuadas para que pudieran ingresar en la máquina artesanal existente, ya que no existe ninguna normal para los ensayos de losas aligeradas, se adecuo, realizando un ensayo en la cual se midió la deformación de los probetas de losas y a su vez la fuerza que se aplicó a cada losa. Las probetas de losas aligeradas que desarrollamos en la siguiente investigación son: losas aligeradas sin tubería, losas aligeradas con tubería perpendicular a las viguetas, losas aligeradas con tubería paralelas a las viguetas y por último losas aligeradas con tubería perpendicular a las viguetas enrolladas con alambre N° 16. Todas estas losas se elaboraron con un concreto f’c 210 kg/cm 2 ya que mayormente en las edificaciones de nuestro medio se usan esta resistencia.In the following research paper, named: ""INFLUENCE OF THE EMBEDDING DUCTS OVER THE STRUCTURAL BEHAVIOR OF THE CORE Slabs"", we will explain the necessary caution to be taken when the core Slabs have drain pipes. The aim of this research is to observe and analyze the structural behavior of a core slab without pipe and another one that is fitting a concrete cover slab. For this work we developed prototypes of core Slabs with the appropriate dimensions to be able to fit them into the craft machine, since there is no a standard machine for the tests of this core Slabs. They were adapted by doing a test in which the deformation and the power of the core Slabs prototypes were measured. The core Slabs prototypes that we are researching are: core Slabs without pipe, core Slabs with pipe in perpendicular to the joists, core Slabs with pipe in parallel to the joists and finally core Slabs with pipe in parallel to the joists wrapped to the wire number 16. All these core Slabs were made with a concrete FCK 210, since this strengh is used in the existing buildings.Tesi

Angulo Ruiz, Elizabeth Cecilia - One of the best experts on this subject based on the ideXlab platform.

  • Influencia del empotramiento de tuberías sobre el comportamiento estructural de losas aligeradas
    'Universidad Privada Antenor Orrego', 2017
    Co-Authors: Angulo Ruiz, Elizabeth Cecilia, Rodriguez Bocanegra, Jenny Isabel
    Abstract:

    In the following research paper, named: ""INFLUENCE OF THE EMBEDDING DUCTS OVER THE STRUCTURAL BEHAVIOR OF THE CORE Slabs"", we will explain the necessary caution to be taken when the core Slabs have drain pipes. The aim of this research is to observe and analyze the structural behavior of a core slab without pipe and another one that is fitting a concrete cover slab. For this work we developed prototypes of core Slabs with the appropriate dimensions to be able to fit them into the craft machine, since there is no a standard machine for the tests of this core Slabs. They were adapted by doing a test in which the deformation and the power of the core Slabs prototypes were measured. The core Slabs prototypes that we are researching are: core Slabs without pipe, core Slabs with pipe in perpendicular to the joists, core Slabs with pipe in parallel to the joists and finally core Slabs with pipe in parallel to the joists wrapped to the wire number 16. All these core Slabs were made with a concrete FCK 210, since this strengh is used in the existing buildings.En el siguiente trabajo de investigación, titulado: “INFLUENCIA DEL EMPOTRAMIENTO DE TUBERIAS SOBRE EL COMPORTAMIENTO ESTRUCTURAL DE LOSAS ALIGERADAS”, expondremos el importante cuidado que se debe de tener cuando la losa aligerada presenta tubería de desagüe. El objetivo principal de esta investigación es poder observar y analizar el comportamiento estructural que presenta una losa aligerada sin tubería con otra losa aligerada que presenta tubería embebida en concreto. Para lo cual se desarrollaron probetas de losas con las dimensiones adecuadas para que pudieran ingresar en la máquina artesanal existente, ya que no existe ninguna normal para los ensayos de losas aligeradas, se adecuo, realizando un ensayo en la cual se midió la deformación de los probetas de losas y a su vez la fuerza que se aplicó a cada losa. Las probetas de losas aligeradas que desarrollamos en la siguiente investigación son: losas aligeradas sin tubería, losas aligeradas con tubería perpendicular a las viguetas, losas aligeradas con tubería paralelas a las viguetas y por último losas aligeradas con tubería perpendicular a las viguetas enrolladas con alambre N° 16. Todas estas losas se elaboraron con un concreto f’c 210 kg/cm 2 ya que mayormente en las edificaciones de nuestro medio se usan esta resistencia

  • Influencia del empotramiento de tuberías sobre el comportamiento estructural de losas aligeradas
    Universidad Privada Antenor Orrego - UPAO, 2017
    Co-Authors: Angulo Ruiz, Elizabeth Cecilia, Rodriguez Bocanegra, Jenny Isabel
    Abstract:

    En el siguiente trabajo de investigación, titulado: “INFLUENCIA DEL EMPOTRAMIENTO DE TUBERIAS SOBRE EL COMPORTAMIENTO ESTRUCTURAL DE LOSAS ALIGERADAS”, expondremos el importante cuidado que se debe de tener cuando la losa aligerada presenta tubería de desagüe. El objetivo principal de esta investigación es poder observar y analizar el comportamiento estructural que presenta una losa aligerada sin tubería con otra losa aligerada que presenta tubería embebida en concreto. Para lo cual se desarrollaron probetas de losas con las dimensiones adecuadas para que pudieran ingresar en la máquina artesanal existente, ya que no existe ninguna normal para los ensayos de losas aligeradas, se adecuo, realizando un ensayo en la cual se midió la deformación de los probetas de losas y a su vez la fuerza que se aplicó a cada losa. Las probetas de losas aligeradas que desarrollamos en la siguiente investigación son: losas aligeradas sin tubería, losas aligeradas con tubería perpendicular a las viguetas, losas aligeradas con tubería paralelas a las viguetas y por último losas aligeradas con tubería perpendicular a las viguetas enrolladas con alambre N° 16. Todas estas losas se elaboraron con un concreto f’c 210 kg/cm 2 ya que mayormente en las edificaciones de nuestro medio se usan esta resistencia.In the following research paper, named: ""INFLUENCE OF THE EMBEDDING DUCTS OVER THE STRUCTURAL BEHAVIOR OF THE CORE Slabs"", we will explain the necessary caution to be taken when the core Slabs have drain pipes. The aim of this research is to observe and analyze the structural behavior of a core slab without pipe and another one that is fitting a concrete cover slab. For this work we developed prototypes of core Slabs with the appropriate dimensions to be able to fit them into the craft machine, since there is no a standard machine for the tests of this core Slabs. They were adapted by doing a test in which the deformation and the power of the core Slabs prototypes were measured. The core Slabs prototypes that we are researching are: core Slabs without pipe, core Slabs with pipe in perpendicular to the joists, core Slabs with pipe in parallel to the joists and finally core Slabs with pipe in parallel to the joists wrapped to the wire number 16. All these core Slabs were made with a concrete FCK 210, since this strengh is used in the existing buildings.Tesi

Xiaopeng Li - One of the best experts on this subject based on the ideXlab platform.

  • alternative shear reinforcement for reinforced concrete flat Slabs
    Journal of Structural Engineering-asce, 2003
    Co-Authors: Kypros Pilakoutas, Xiaopeng Li
    Abstract:

    This paper presents the first series of validation tests for a patented shear reinforcement system for reinforced concrete flat Slabs. The system, called “Shearband,” consists of elongated thin steel strips punched with holes, which undulate into the slab from the top surface. The main advantages of the new reinforcement system are structural effectiveness, flexibility, simplicity, and speed of construction. Four reinforced concrete Slabs were tested in a specially designed test rig. The Slabs reinforced in shear exhibited ductile behavior after achieving their full flexural potential, thus proving the effectiveness of the new reinforcement. This paper reviews briefly existing types of shear reinforcement and identifies the need for more efficient and economic solutions. Details of the experimental setup and results are given, including strain and deflection measurements as well as photographs of sections through the Slabs. Finally, comparisons are made with the ACI 318 and BS8110 code predictions, which confirm that the system enabled the Slabs to avoid punching shear failure and achieve their flexural potential. In addition, both codes are shown to lead to conservative estimates of flexural and punching shear capacities of reinforced concrete Slabs.

David C Rubie - One of the best experts on this subject based on the ideXlab platform.

  • stagnation of subducting Slabs in the transition zone due to slow diffusion in majoritic garnet
    Nature Geoscience, 2013
    Co-Authors: W L Van Mierlo, Falko Langenhorst, Daniel J Frost, David C Rubie
    Abstract:

    Subducting Slabs of oceanic lithosphere often stagnate before reaching the lower mantle. Laboratory experiments under high pressures and temperatures show that pyroxene, a common mineral in such Slabs, is transformed to its dense, high-pressure counterpart, majorite garnet, at a very slow rate, temporarily keeping the Slabs buoyant compared to the surrounding mantle.

  • metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere
    Reviews of Geophysics, 1996
    Co-Authors: Stephen H Kirby, Seth Stein, Emile A Okal, David C Rubie
    Abstract:

    Earth's deepest earthquakes occur as a population in subducting or previously subducted lithosphere at depths ranging from about 325 to 690 km. This depth interval closely brackets the mantle transition zone, characterized by rapid seismic velocity increases resulting from the transformation of upper mantle minerals to higher-pressure phases. Deep earthquakes thus provide the primary direct evidence for subduction of the lithosphere to these depths and allow us to investigate the deep thermal, thermodynamic, and mechanical ferment inside Slabs. Numerical simulations of reaction rates show that the olivine → spinel transformation should be kinetically hindered in old, cold Slabs descending into the transition zone. Thus wedge-shaped zones of metastable peridotite probably persist to depths of more than 600 km. Laboratory deformation experiments on some metastable minerals display a shear instability called transformational faulting. This instability involves sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser, finer-grained phase. Hence in cold Slabs, such faulting is expected for the polymorphic reactions in which olivine transforms to the spinel structure and clinoenstatite transforms to ilmenite. It is thus natural to hypothesize that deep earthquakes result from transformational faulting in metastable peridotite wedges within cold Slabs. This consideration of the mineralogical states of Slabs augments the traditional largely thermal view of slab processes and explains some previously enigmatic slab features. It explains why deep seismicity occurs only in the approximate depth range of the mantle transition zone, where minerals in downgoing Slabs should transform to spinel and ilmenite structures. The onset of deep shocks at about 325 km is consistent with the onset of metastability near the equilibrium phase boundary in the slab. Even if a slab penetrates into the lower mantle, earthquakes should cease at depths near 700 km, because the seismogenic phase transformations in the slab are completed or can no longer occur. Substantial metastability is expected only in old, cold Slabs, consistent with the observed restriction of deep earthquakes to those settings. Earthquakes should be restricted to the cold cores of Slabs, as in any model in which the seismicity is temperature controlled, via the distribution of metastability. However, the geometries of recent large deep earthquakes pose a challenge for any such models. Transformational faulting may give insight into why deep shocks lack appreciable aftershocks and why their source characteristics, including focal mechanisms indicating localized shear failure rather than implosive deformation, are so similar to those of shallow earthquakes. Finally, metastable phase changes in Slabs would produce an internal source of stress in addition to those due to the weight of the sinking slab. Such internal stresses may explain the occurrence of earthquakes in portions of lithosphere which have foundered to the bottom of the transition zone and/or are detached from subducting Slabs. Metastability in downgoing Slabs could have considerable geodynamic significance. Metastable wedges would reduce the negative buoyancy of Slabs, decrease the driving force for subduction, and influence the state of stress in Slabs. Heat released by metastable phase changes would raise temperatures within Slabs and facilitate the transformation of spinel to the lower mantle mineral assemblage, causing Slabs to equilibrate more rapidly with the ambient mantle and thus contribute to the cessation of deep seismicity. Because wedge formation should occur only for fast subducting Slabs, it may act as a “parachute” and contribute to regulating plate speeds. Wedge formation would also have consequences for mantle evolution because the density of a slab stagnated near the bottom of the transition zone would increase as it heats up and the wedge transforms to denser spinel, favoring the subsequent sinking of the slab into the lower mantle.

Dennis Lam - One of the best experts on this subject based on the ideXlab platform.

  • Experimental response and code modelling of continuous concrete Slabs reinforced with BFRP bars
    Composite Structures, 2014
    Co-Authors: Mohamed Elarbi Moh Mahroug, Ashraf F. Ashour, Dennis Lam
    Abstract:

    Abstract This paper presents test results and code predictions of four continuously and two simply supported concrete Slabs reinforced with basalt fibre reinforced polymer (BFRP) bars. One continuously supported steel reinforced concrete slab was also tested for comparison purposes. All Slabs tested were 500 mm in width and 150 mm in depth. The simply supported Slabs had a span of 2000 mm, whereas the continuous Slabs had two equal spans, each of 2000 mm. Different combinations of under and over BFRP reinforcement at the top and bottom layers of Slabs were investigated. The continuously supported BFRP reinforced concrete Slabs exhibited larger deflections and wider cracks than the counterpart reinforced with steel. Furthermore, the over reinforced BFRP reinforced concrete slab at the top and bottom layers showed the highest load capacity and the least deflection of all BFRP Slabs tested. All continuous BFRP reinforced concrete Slabs failed owing to combined shear and flexure at the middle support region. ISIS-M03-07 and CSA S806-06 design guidelines reasonably predicted the deflection of the BFRP Slabs tested. However, ACI 440-1R-06 underestimated the BFRP slab deflections and overestimated the moment capacities at mid-span and over support sections.