Speed Application

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 243 Experts worldwide ranked by ideXlab platform

Mike Mcclelland - One of the best experts on this subject based on the ideXlab platform.

  • Axial Ferrite-Magnet-Assisted Synchronous Reluctance Motor
    2018
    Co-Authors: Paul Akiki, Maya Hage Hassan, Jean-claude Vannier, Mohamed Bensetti, Dany Prieto, Mike Mcclelland
    Abstract:

    This paper presents a noval 18 poles /16 slots Axial Flux Permanent Magnet-Assisted Synchronous Reluctance Motor (AF-PMASynRM) with non-overlapping concentrated winding. At first, the torque ripple and iron losses are analyzed using 3D Finite Element Analysis (3D-FEA). Then, a comparison between 3D-FEA and 2D-FEA based on flux and iron losses is established. In this paper, we propose to design the motor for high torque low Speed Application using a multiobjective optimization. In this kind of iterative procedure, the use of Finite Element is generally time consuming. Thus, we propose a 2D analytical saturated model that considers the local saturation near the iron bridges and the slot tangential leakage flux. The magnetic model is coupled with an electrical model that computes the power factor and the voltage at the motor terminals. A loss model is also developed to calculate the copper and the iron losses. The proposed analytical model is 5 times faster than the 2D- FEA. The optimal axial structure is compared to a previously optimized radial motor in order to evaluate the design benefits of axial flux machines.

  • Multi-Physics Design of a V-shape IPM Motor
    IEEE Transactions on Energy Conversion, 2018
    Co-Authors: Paul Akiki, Maya Hage Hassan, Philippe Dessante, Jean-claude Vannier, Mohamed Bensetti, Dany Prieto, Mike Mcclelland
    Abstract:

    In this paper a multi-physics model is proposed for a multi-V-shape Interior Permanent Magnet (IPM) motor with concentrated winding. This work develops a non-linear magnetic model that computes the flux density in the motor. The analytical model includes several novel aspects: it takes into account the local saturation near the iron bridges, it proposes a method for modeling the concentrated tooth winding, it calculates the slot tangential leakage flux and includes it in the flux linkage calculation. The magnetic model is coupled with an electrical model that computes the power factor and the voltage at the motor terminals. A loss model is developed in order to calculate the copper and the iron losses. They are used as inputs to a nodal thermal model that introduces a thermal circuit for concentrated end-winding and computes the temperature of the motor. A mechanical model is developed. It evaluates the mechanical constraints encountered by the structure. The models are verified using finite element computations and numerical calculations performed with dedicated software. Besides, the coupled analytical model is experimentally validated using a prototype motor. Finally, two multi-physics bi-objective optimizations are carried out in order to design the motor for high torque and low Speed Application.

  • Multi-physics modeling and optimization of a multi-V-shape IPM with concentrated winding
    2017
    Co-Authors: Paul Akiki, Maya Hage Hassan, Philippe Dessante, Jean-claude Vannier, Mohamed Bensetti, Dany Prieto, Mike Mcclelland
    Abstract:

    In this paper a coupled multi-physics model is proposed for a multi-V-shape Interior Permanent Magnet (IPM) motor with concentrated winding. A non-linear magnetic model computes the flux density in the stator and the rotor and delivers the torque, the internal power factor and the internal voltage. It is coupled with an electrical model that computes the power factor and the voltage at the motor terminals by considering the resistance and the leakage inductance. A loss model is developed in order to calculate the copper and the iron losses. They are used as inputs to a thermal model that computes the temperature of the motor. Finally, a multi-objective optimization is carried out in order to design the motor for a high torque and low Speed Application.

  • Performance comparison of a doubly-salient motor with multi-V-shape ferrite magnets
    2016
    Co-Authors: Paul Akiki, Maya Hage Hassan, Jean-claude Vannier, Mohamed Bensetti, Benjamin Dagusé, Mike Mcclelland
    Abstract:

    This paper presents the analysis of a novel doubly salient structure with concentrated tooth winding and multi-V shape ferrite magnets. Permanent Magnet Synchronous Machines (PMSM) have been universally used with rare-earth magnets or with ferrite magnets and distributed winding. The proposed topology is presented as an improvement to PMSM for high torque and low-Speed Applications. It has low copper losses due to its short end-winding and benefits from a low cost by virtue of its lack of rare earth materials. This paper presents two slot/pole combinations: the 18/16 and the 12/10. A 2D Finite Element Analysis is used to investigate the average torque, the power factor and the torque ripple of each structure. It is shown that high performance is achieved for both motors. However, a parametric-analysis is performed on the 18/16 motor and shows that the saliency torque cannot be improved without reducing the torque and the power factor. As for the 12/10 motor, its main drawback is its high torque ripple. The torque ripple is reduced using two techniques; a rotor step skew and the use of an asymmetric pole shape. In this paper, a combination of both methods is proposed in order to reduce specific torque harmonics. Finally a comparison of the two motors is presented in order to determine which one is more suitable for the high torque and low Speed Application.

Paul Akiki - One of the best experts on this subject based on the ideXlab platform.

  • Axial Ferrite-Magnet-Assisted Synchronous Reluctance Motor
    2018
    Co-Authors: Paul Akiki, Maya Hage Hassan, Jean-claude Vannier, Mohamed Bensetti, Dany Prieto, Mike Mcclelland
    Abstract:

    This paper presents a noval 18 poles /16 slots Axial Flux Permanent Magnet-Assisted Synchronous Reluctance Motor (AF-PMASynRM) with non-overlapping concentrated winding. At first, the torque ripple and iron losses are analyzed using 3D Finite Element Analysis (3D-FEA). Then, a comparison between 3D-FEA and 2D-FEA based on flux and iron losses is established. In this paper, we propose to design the motor for high torque low Speed Application using a multiobjective optimization. In this kind of iterative procedure, the use of Finite Element is generally time consuming. Thus, we propose a 2D analytical saturated model that considers the local saturation near the iron bridges and the slot tangential leakage flux. The magnetic model is coupled with an electrical model that computes the power factor and the voltage at the motor terminals. A loss model is also developed to calculate the copper and the iron losses. The proposed analytical model is 5 times faster than the 2D- FEA. The optimal axial structure is compared to a previously optimized radial motor in order to evaluate the design benefits of axial flux machines.

  • Multi-Physics Design of a V-shape IPM Motor
    IEEE Transactions on Energy Conversion, 2018
    Co-Authors: Paul Akiki, Maya Hage Hassan, Philippe Dessante, Jean-claude Vannier, Mohamed Bensetti, Dany Prieto, Mike Mcclelland
    Abstract:

    In this paper a multi-physics model is proposed for a multi-V-shape Interior Permanent Magnet (IPM) motor with concentrated winding. This work develops a non-linear magnetic model that computes the flux density in the motor. The analytical model includes several novel aspects: it takes into account the local saturation near the iron bridges, it proposes a method for modeling the concentrated tooth winding, it calculates the slot tangential leakage flux and includes it in the flux linkage calculation. The magnetic model is coupled with an electrical model that computes the power factor and the voltage at the motor terminals. A loss model is developed in order to calculate the copper and the iron losses. They are used as inputs to a nodal thermal model that introduces a thermal circuit for concentrated end-winding and computes the temperature of the motor. A mechanical model is developed. It evaluates the mechanical constraints encountered by the structure. The models are verified using finite element computations and numerical calculations performed with dedicated software. Besides, the coupled analytical model is experimentally validated using a prototype motor. Finally, two multi-physics bi-objective optimizations are carried out in order to design the motor for high torque and low Speed Application.

  • Multi-physics modeling and optimization of a multi-V-shape IPM with concentrated winding
    2017
    Co-Authors: Paul Akiki, Maya Hage Hassan, Philippe Dessante, Jean-claude Vannier, Mohamed Bensetti, Dany Prieto, Mike Mcclelland
    Abstract:

    In this paper a coupled multi-physics model is proposed for a multi-V-shape Interior Permanent Magnet (IPM) motor with concentrated winding. A non-linear magnetic model computes the flux density in the stator and the rotor and delivers the torque, the internal power factor and the internal voltage. It is coupled with an electrical model that computes the power factor and the voltage at the motor terminals by considering the resistance and the leakage inductance. A loss model is developed in order to calculate the copper and the iron losses. They are used as inputs to a thermal model that computes the temperature of the motor. Finally, a multi-objective optimization is carried out in order to design the motor for a high torque and low Speed Application.

  • Performance comparison of a doubly-salient motor with multi-V-shape ferrite magnets
    2016
    Co-Authors: Paul Akiki, Maya Hage Hassan, Jean-claude Vannier, Mohamed Bensetti, Benjamin Dagusé, Mike Mcclelland
    Abstract:

    This paper presents the analysis of a novel doubly salient structure with concentrated tooth winding and multi-V shape ferrite magnets. Permanent Magnet Synchronous Machines (PMSM) have been universally used with rare-earth magnets or with ferrite magnets and distributed winding. The proposed topology is presented as an improvement to PMSM for high torque and low-Speed Applications. It has low copper losses due to its short end-winding and benefits from a low cost by virtue of its lack of rare earth materials. This paper presents two slot/pole combinations: the 18/16 and the 12/10. A 2D Finite Element Analysis is used to investigate the average torque, the power factor and the torque ripple of each structure. It is shown that high performance is achieved for both motors. However, a parametric-analysis is performed on the 18/16 motor and shows that the saliency torque cannot be improved without reducing the torque and the power factor. As for the 12/10 motor, its main drawback is its high torque ripple. The torque ripple is reduced using two techniques; a rotor step skew and the use of an asymmetric pole shape. In this paper, a combination of both methods is proposed in order to reduce specific torque harmonics. Finally a comparison of the two motors is presented in order to determine which one is more suitable for the high torque and low Speed Application.

Maya Hage Hassan - One of the best experts on this subject based on the ideXlab platform.

  • Axial Ferrite-Magnet-Assisted Synchronous Reluctance Motor
    2018
    Co-Authors: Paul Akiki, Maya Hage Hassan, Jean-claude Vannier, Mohamed Bensetti, Dany Prieto, Mike Mcclelland
    Abstract:

    This paper presents a noval 18 poles /16 slots Axial Flux Permanent Magnet-Assisted Synchronous Reluctance Motor (AF-PMASynRM) with non-overlapping concentrated winding. At first, the torque ripple and iron losses are analyzed using 3D Finite Element Analysis (3D-FEA). Then, a comparison between 3D-FEA and 2D-FEA based on flux and iron losses is established. In this paper, we propose to design the motor for high torque low Speed Application using a multiobjective optimization. In this kind of iterative procedure, the use of Finite Element is generally time consuming. Thus, we propose a 2D analytical saturated model that considers the local saturation near the iron bridges and the slot tangential leakage flux. The magnetic model is coupled with an electrical model that computes the power factor and the voltage at the motor terminals. A loss model is also developed to calculate the copper and the iron losses. The proposed analytical model is 5 times faster than the 2D- FEA. The optimal axial structure is compared to a previously optimized radial motor in order to evaluate the design benefits of axial flux machines.

  • Multi-Physics Design of a V-shape IPM Motor
    IEEE Transactions on Energy Conversion, 2018
    Co-Authors: Paul Akiki, Maya Hage Hassan, Philippe Dessante, Jean-claude Vannier, Mohamed Bensetti, Dany Prieto, Mike Mcclelland
    Abstract:

    In this paper a multi-physics model is proposed for a multi-V-shape Interior Permanent Magnet (IPM) motor with concentrated winding. This work develops a non-linear magnetic model that computes the flux density in the motor. The analytical model includes several novel aspects: it takes into account the local saturation near the iron bridges, it proposes a method for modeling the concentrated tooth winding, it calculates the slot tangential leakage flux and includes it in the flux linkage calculation. The magnetic model is coupled with an electrical model that computes the power factor and the voltage at the motor terminals. A loss model is developed in order to calculate the copper and the iron losses. They are used as inputs to a nodal thermal model that introduces a thermal circuit for concentrated end-winding and computes the temperature of the motor. A mechanical model is developed. It evaluates the mechanical constraints encountered by the structure. The models are verified using finite element computations and numerical calculations performed with dedicated software. Besides, the coupled analytical model is experimentally validated using a prototype motor. Finally, two multi-physics bi-objective optimizations are carried out in order to design the motor for high torque and low Speed Application.

  • Multi-physics modeling and optimization of a multi-V-shape IPM with concentrated winding
    2017
    Co-Authors: Paul Akiki, Maya Hage Hassan, Philippe Dessante, Jean-claude Vannier, Mohamed Bensetti, Dany Prieto, Mike Mcclelland
    Abstract:

    In this paper a coupled multi-physics model is proposed for a multi-V-shape Interior Permanent Magnet (IPM) motor with concentrated winding. A non-linear magnetic model computes the flux density in the stator and the rotor and delivers the torque, the internal power factor and the internal voltage. It is coupled with an electrical model that computes the power factor and the voltage at the motor terminals by considering the resistance and the leakage inductance. A loss model is developed in order to calculate the copper and the iron losses. They are used as inputs to a thermal model that computes the temperature of the motor. Finally, a multi-objective optimization is carried out in order to design the motor for a high torque and low Speed Application.

  • Performance comparison of a doubly-salient motor with multi-V-shape ferrite magnets
    2016
    Co-Authors: Paul Akiki, Maya Hage Hassan, Jean-claude Vannier, Mohamed Bensetti, Benjamin Dagusé, Mike Mcclelland
    Abstract:

    This paper presents the analysis of a novel doubly salient structure with concentrated tooth winding and multi-V shape ferrite magnets. Permanent Magnet Synchronous Machines (PMSM) have been universally used with rare-earth magnets or with ferrite magnets and distributed winding. The proposed topology is presented as an improvement to PMSM for high torque and low-Speed Applications. It has low copper losses due to its short end-winding and benefits from a low cost by virtue of its lack of rare earth materials. This paper presents two slot/pole combinations: the 18/16 and the 12/10. A 2D Finite Element Analysis is used to investigate the average torque, the power factor and the torque ripple of each structure. It is shown that high performance is achieved for both motors. However, a parametric-analysis is performed on the 18/16 motor and shows that the saliency torque cannot be improved without reducing the torque and the power factor. As for the 12/10 motor, its main drawback is its high torque ripple. The torque ripple is reduced using two techniques; a rotor step skew and the use of an asymmetric pole shape. In this paper, a combination of both methods is proposed in order to reduce specific torque harmonics. Finally a comparison of the two motors is presented in order to determine which one is more suitable for the high torque and low Speed Application.

Jean-claude Vannier - One of the best experts on this subject based on the ideXlab platform.

  • Axial Ferrite-Magnet-Assisted Synchronous Reluctance Motor
    2018
    Co-Authors: Paul Akiki, Maya Hage Hassan, Jean-claude Vannier, Mohamed Bensetti, Dany Prieto, Mike Mcclelland
    Abstract:

    This paper presents a noval 18 poles /16 slots Axial Flux Permanent Magnet-Assisted Synchronous Reluctance Motor (AF-PMASynRM) with non-overlapping concentrated winding. At first, the torque ripple and iron losses are analyzed using 3D Finite Element Analysis (3D-FEA). Then, a comparison between 3D-FEA and 2D-FEA based on flux and iron losses is established. In this paper, we propose to design the motor for high torque low Speed Application using a multiobjective optimization. In this kind of iterative procedure, the use of Finite Element is generally time consuming. Thus, we propose a 2D analytical saturated model that considers the local saturation near the iron bridges and the slot tangential leakage flux. The magnetic model is coupled with an electrical model that computes the power factor and the voltage at the motor terminals. A loss model is also developed to calculate the copper and the iron losses. The proposed analytical model is 5 times faster than the 2D- FEA. The optimal axial structure is compared to a previously optimized radial motor in order to evaluate the design benefits of axial flux machines.

  • Multi-Physics Design of a V-shape IPM Motor
    IEEE Transactions on Energy Conversion, 2018
    Co-Authors: Paul Akiki, Maya Hage Hassan, Philippe Dessante, Jean-claude Vannier, Mohamed Bensetti, Dany Prieto, Mike Mcclelland
    Abstract:

    In this paper a multi-physics model is proposed for a multi-V-shape Interior Permanent Magnet (IPM) motor with concentrated winding. This work develops a non-linear magnetic model that computes the flux density in the motor. The analytical model includes several novel aspects: it takes into account the local saturation near the iron bridges, it proposes a method for modeling the concentrated tooth winding, it calculates the slot tangential leakage flux and includes it in the flux linkage calculation. The magnetic model is coupled with an electrical model that computes the power factor and the voltage at the motor terminals. A loss model is developed in order to calculate the copper and the iron losses. They are used as inputs to a nodal thermal model that introduces a thermal circuit for concentrated end-winding and computes the temperature of the motor. A mechanical model is developed. It evaluates the mechanical constraints encountered by the structure. The models are verified using finite element computations and numerical calculations performed with dedicated software. Besides, the coupled analytical model is experimentally validated using a prototype motor. Finally, two multi-physics bi-objective optimizations are carried out in order to design the motor for high torque and low Speed Application.

  • Multi-physics modeling and optimization of a multi-V-shape IPM with concentrated winding
    2017
    Co-Authors: Paul Akiki, Maya Hage Hassan, Philippe Dessante, Jean-claude Vannier, Mohamed Bensetti, Dany Prieto, Mike Mcclelland
    Abstract:

    In this paper a coupled multi-physics model is proposed for a multi-V-shape Interior Permanent Magnet (IPM) motor with concentrated winding. A non-linear magnetic model computes the flux density in the stator and the rotor and delivers the torque, the internal power factor and the internal voltage. It is coupled with an electrical model that computes the power factor and the voltage at the motor terminals by considering the resistance and the leakage inductance. A loss model is developed in order to calculate the copper and the iron losses. They are used as inputs to a thermal model that computes the temperature of the motor. Finally, a multi-objective optimization is carried out in order to design the motor for a high torque and low Speed Application.

  • Performance comparison of a doubly-salient motor with multi-V-shape ferrite magnets
    2016
    Co-Authors: Paul Akiki, Maya Hage Hassan, Jean-claude Vannier, Mohamed Bensetti, Benjamin Dagusé, Mike Mcclelland
    Abstract:

    This paper presents the analysis of a novel doubly salient structure with concentrated tooth winding and multi-V shape ferrite magnets. Permanent Magnet Synchronous Machines (PMSM) have been universally used with rare-earth magnets or with ferrite magnets and distributed winding. The proposed topology is presented as an improvement to PMSM for high torque and low-Speed Applications. It has low copper losses due to its short end-winding and benefits from a low cost by virtue of its lack of rare earth materials. This paper presents two slot/pole combinations: the 18/16 and the 12/10. A 2D Finite Element Analysis is used to investigate the average torque, the power factor and the torque ripple of each structure. It is shown that high performance is achieved for both motors. However, a parametric-analysis is performed on the 18/16 motor and shows that the saliency torque cannot be improved without reducing the torque and the power factor. As for the 12/10 motor, its main drawback is its high torque ripple. The torque ripple is reduced using two techniques; a rotor step skew and the use of an asymmetric pole shape. In this paper, a combination of both methods is proposed in order to reduce specific torque harmonics. Finally a comparison of the two motors is presented in order to determine which one is more suitable for the high torque and low Speed Application.

Mohamed Bensetti - One of the best experts on this subject based on the ideXlab platform.

  • Axial Ferrite-Magnet-Assisted Synchronous Reluctance Motor
    2018
    Co-Authors: Paul Akiki, Maya Hage Hassan, Jean-claude Vannier, Mohamed Bensetti, Dany Prieto, Mike Mcclelland
    Abstract:

    This paper presents a noval 18 poles /16 slots Axial Flux Permanent Magnet-Assisted Synchronous Reluctance Motor (AF-PMASynRM) with non-overlapping concentrated winding. At first, the torque ripple and iron losses are analyzed using 3D Finite Element Analysis (3D-FEA). Then, a comparison between 3D-FEA and 2D-FEA based on flux and iron losses is established. In this paper, we propose to design the motor for high torque low Speed Application using a multiobjective optimization. In this kind of iterative procedure, the use of Finite Element is generally time consuming. Thus, we propose a 2D analytical saturated model that considers the local saturation near the iron bridges and the slot tangential leakage flux. The magnetic model is coupled with an electrical model that computes the power factor and the voltage at the motor terminals. A loss model is also developed to calculate the copper and the iron losses. The proposed analytical model is 5 times faster than the 2D- FEA. The optimal axial structure is compared to a previously optimized radial motor in order to evaluate the design benefits of axial flux machines.

  • Multi-Physics Design of a V-shape IPM Motor
    IEEE Transactions on Energy Conversion, 2018
    Co-Authors: Paul Akiki, Maya Hage Hassan, Philippe Dessante, Jean-claude Vannier, Mohamed Bensetti, Dany Prieto, Mike Mcclelland
    Abstract:

    In this paper a multi-physics model is proposed for a multi-V-shape Interior Permanent Magnet (IPM) motor with concentrated winding. This work develops a non-linear magnetic model that computes the flux density in the motor. The analytical model includes several novel aspects: it takes into account the local saturation near the iron bridges, it proposes a method for modeling the concentrated tooth winding, it calculates the slot tangential leakage flux and includes it in the flux linkage calculation. The magnetic model is coupled with an electrical model that computes the power factor and the voltage at the motor terminals. A loss model is developed in order to calculate the copper and the iron losses. They are used as inputs to a nodal thermal model that introduces a thermal circuit for concentrated end-winding and computes the temperature of the motor. A mechanical model is developed. It evaluates the mechanical constraints encountered by the structure. The models are verified using finite element computations and numerical calculations performed with dedicated software. Besides, the coupled analytical model is experimentally validated using a prototype motor. Finally, two multi-physics bi-objective optimizations are carried out in order to design the motor for high torque and low Speed Application.

  • Multi-physics modeling and optimization of a multi-V-shape IPM with concentrated winding
    2017
    Co-Authors: Paul Akiki, Maya Hage Hassan, Philippe Dessante, Jean-claude Vannier, Mohamed Bensetti, Dany Prieto, Mike Mcclelland
    Abstract:

    In this paper a coupled multi-physics model is proposed for a multi-V-shape Interior Permanent Magnet (IPM) motor with concentrated winding. A non-linear magnetic model computes the flux density in the stator and the rotor and delivers the torque, the internal power factor and the internal voltage. It is coupled with an electrical model that computes the power factor and the voltage at the motor terminals by considering the resistance and the leakage inductance. A loss model is developed in order to calculate the copper and the iron losses. They are used as inputs to a thermal model that computes the temperature of the motor. Finally, a multi-objective optimization is carried out in order to design the motor for a high torque and low Speed Application.

  • Performance comparison of a doubly-salient motor with multi-V-shape ferrite magnets
    2016
    Co-Authors: Paul Akiki, Maya Hage Hassan, Jean-claude Vannier, Mohamed Bensetti, Benjamin Dagusé, Mike Mcclelland
    Abstract:

    This paper presents the analysis of a novel doubly salient structure with concentrated tooth winding and multi-V shape ferrite magnets. Permanent Magnet Synchronous Machines (PMSM) have been universally used with rare-earth magnets or with ferrite magnets and distributed winding. The proposed topology is presented as an improvement to PMSM for high torque and low-Speed Applications. It has low copper losses due to its short end-winding and benefits from a low cost by virtue of its lack of rare earth materials. This paper presents two slot/pole combinations: the 18/16 and the 12/10. A 2D Finite Element Analysis is used to investigate the average torque, the power factor and the torque ripple of each structure. It is shown that high performance is achieved for both motors. However, a parametric-analysis is performed on the 18/16 motor and shows that the saliency torque cannot be improved without reducing the torque and the power factor. As for the 12/10 motor, its main drawback is its high torque ripple. The torque ripple is reduced using two techniques; a rotor step skew and the use of an asymmetric pole shape. In this paper, a combination of both methods is proposed in order to reduce specific torque harmonics. Finally a comparison of the two motors is presented in order to determine which one is more suitable for the high torque and low Speed Application.