Spillage

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 8151 Experts worldwide ranked by ideXlab platform

Steven M Heilmann - One of the best experts on this subject based on the ideXlab platform.

  • industrial symbiosis corn ethanol fermentation hydrothermal carbonization and anaerobic digestion
    Biotechnology and Bioengineering, 2013
    Co-Authors: Brandon M Wood, Lindsey R Jader, Frederick J Schendel, Nicholas J Hahn, Kenneth J Valentas, Patrick J Mcnamara, Paige M Novak, Steven M Heilmann
    Abstract:

    The production of dry-grind corn ethanol results in the generation of intermediate products, thin and whole stillage, which require energy-intensive downstream processing for conversion into commercial animal feed products. Hydrothermal carbonization of thin and whole stillage coupled with anaerobic digestion was investigated as alternative processing methods that could benefit the industry. By substantially eliminating evaporation of water, reductions in downstream energy consumption from 65% to 73% were achieved while generating hydrochar, fatty acids, treated process water, and biogas co-products providing new opportunities for the industry. Processing whole stillage in this manner produced the four co-products, eliminated centrifugation and evaporation, and substantially reduced drying. With thin stillage, all four co-products were again produced, as well as a high quality animal feed. Anaerobic digestion of the aqueous product stream from the hydrothermal carbonization of thin stillage reduced chemical oxygen demand (COD) by more than 90% and converted 83% of the initial COD to methane. Internal use of this biogas could entirely fuel the HTC process and reduce overall natural gas usage. Biotechnol. Bioeng. 2013;110: 2624–2632. © 2013 Wiley Periodicals, Inc.

  • Industrial symbiosis: Corn ethanol fermentation, hydrothermal carbonization, and anaerobic digestion
    Biotechnology and Bioengineering, 2013
    Co-Authors: Brandon M Wood, Lindsey R Jader, Frederick J Schendel, Nicholas J Hahn, Kenneth J Valentas, Patrick J Mcnamara, Paige M Novak, Steven M Heilmann
    Abstract:

    The production of dry-grind corn ethanol results in the generation of intermediate products, thin and whole stillage, which require energy-intensive downstream processing for conversion into commercial animal feed products. Hydrothermal carbonization of thin and whole stillage coupled with anaerobic digestion was investigated as alternative processing methods that could benefit the industry. By substantially eliminating evaporation of water, reductions in downstream energy consumption from 65% to 73% were achieved while generating hydrochar, fatty acids, treated process water, and biogas co-products providing new opportunities for the industry. Processing whole stillage in this manner produced the four co-products, eliminated centrifugation and evaporation, and substantially reduced drying. With thin stillage, all four co-products were again produced, as well as a high quality animal feed. Anaerobic digestion of the aqueous product stream from the hydrothermal carbonization of thin stillage reduced chemical oxygen demand (COD) by more than 90% and converted 83% of the initial COD to methane. Internal use of this biogas could entirely fuel the HTC process and reduce overall natural gas usage.

Brandon M Wood - One of the best experts on this subject based on the ideXlab platform.

  • industrial symbiosis corn ethanol fermentation hydrothermal carbonization and anaerobic digestion
    Biotechnology and Bioengineering, 2013
    Co-Authors: Brandon M Wood, Lindsey R Jader, Frederick J Schendel, Nicholas J Hahn, Kenneth J Valentas, Patrick J Mcnamara, Paige M Novak, Steven M Heilmann
    Abstract:

    The production of dry-grind corn ethanol results in the generation of intermediate products, thin and whole stillage, which require energy-intensive downstream processing for conversion into commercial animal feed products. Hydrothermal carbonization of thin and whole stillage coupled with anaerobic digestion was investigated as alternative processing methods that could benefit the industry. By substantially eliminating evaporation of water, reductions in downstream energy consumption from 65% to 73% were achieved while generating hydrochar, fatty acids, treated process water, and biogas co-products providing new opportunities for the industry. Processing whole stillage in this manner produced the four co-products, eliminated centrifugation and evaporation, and substantially reduced drying. With thin stillage, all four co-products were again produced, as well as a high quality animal feed. Anaerobic digestion of the aqueous product stream from the hydrothermal carbonization of thin stillage reduced chemical oxygen demand (COD) by more than 90% and converted 83% of the initial COD to methane. Internal use of this biogas could entirely fuel the HTC process and reduce overall natural gas usage. Biotechnol. Bioeng. 2013;110: 2624–2632. © 2013 Wiley Periodicals, Inc.

  • Industrial symbiosis: Corn ethanol fermentation, hydrothermal carbonization, and anaerobic digestion
    Biotechnology and Bioengineering, 2013
    Co-Authors: Brandon M Wood, Lindsey R Jader, Frederick J Schendel, Nicholas J Hahn, Kenneth J Valentas, Patrick J Mcnamara, Paige M Novak, Steven M Heilmann
    Abstract:

    The production of dry-grind corn ethanol results in the generation of intermediate products, thin and whole stillage, which require energy-intensive downstream processing for conversion into commercial animal feed products. Hydrothermal carbonization of thin and whole stillage coupled with anaerobic digestion was investigated as alternative processing methods that could benefit the industry. By substantially eliminating evaporation of water, reductions in downstream energy consumption from 65% to 73% were achieved while generating hydrochar, fatty acids, treated process water, and biogas co-products providing new opportunities for the industry. Processing whole stillage in this manner produced the four co-products, eliminated centrifugation and evaporation, and substantially reduced drying. With thin stillage, all four co-products were again produced, as well as a high quality animal feed. Anaerobic digestion of the aqueous product stream from the hydrothermal carbonization of thin stillage reduced chemical oxygen demand (COD) by more than 90% and converted 83% of the initial COD to methane. Internal use of this biogas could entirely fuel the HTC process and reduce overall natural gas usage.

Kenneth J Valentas - One of the best experts on this subject based on the ideXlab platform.

  • industrial symbiosis corn ethanol fermentation hydrothermal carbonization and anaerobic digestion
    Biotechnology and Bioengineering, 2013
    Co-Authors: Brandon M Wood, Lindsey R Jader, Frederick J Schendel, Nicholas J Hahn, Kenneth J Valentas, Patrick J Mcnamara, Paige M Novak, Steven M Heilmann
    Abstract:

    The production of dry-grind corn ethanol results in the generation of intermediate products, thin and whole stillage, which require energy-intensive downstream processing for conversion into commercial animal feed products. Hydrothermal carbonization of thin and whole stillage coupled with anaerobic digestion was investigated as alternative processing methods that could benefit the industry. By substantially eliminating evaporation of water, reductions in downstream energy consumption from 65% to 73% were achieved while generating hydrochar, fatty acids, treated process water, and biogas co-products providing new opportunities for the industry. Processing whole stillage in this manner produced the four co-products, eliminated centrifugation and evaporation, and substantially reduced drying. With thin stillage, all four co-products were again produced, as well as a high quality animal feed. Anaerobic digestion of the aqueous product stream from the hydrothermal carbonization of thin stillage reduced chemical oxygen demand (COD) by more than 90% and converted 83% of the initial COD to methane. Internal use of this biogas could entirely fuel the HTC process and reduce overall natural gas usage. Biotechnol. Bioeng. 2013;110: 2624–2632. © 2013 Wiley Periodicals, Inc.

  • Industrial symbiosis: Corn ethanol fermentation, hydrothermal carbonization, and anaerobic digestion
    Biotechnology and Bioengineering, 2013
    Co-Authors: Brandon M Wood, Lindsey R Jader, Frederick J Schendel, Nicholas J Hahn, Kenneth J Valentas, Patrick J Mcnamara, Paige M Novak, Steven M Heilmann
    Abstract:

    The production of dry-grind corn ethanol results in the generation of intermediate products, thin and whole stillage, which require energy-intensive downstream processing for conversion into commercial animal feed products. Hydrothermal carbonization of thin and whole stillage coupled with anaerobic digestion was investigated as alternative processing methods that could benefit the industry. By substantially eliminating evaporation of water, reductions in downstream energy consumption from 65% to 73% were achieved while generating hydrochar, fatty acids, treated process water, and biogas co-products providing new opportunities for the industry. Processing whole stillage in this manner produced the four co-products, eliminated centrifugation and evaporation, and substantially reduced drying. With thin stillage, all four co-products were again produced, as well as a high quality animal feed. Anaerobic digestion of the aqueous product stream from the hydrothermal carbonization of thin stillage reduced chemical oxygen demand (COD) by more than 90% and converted 83% of the initial COD to methane. Internal use of this biogas could entirely fuel the HTC process and reduce overall natural gas usage.

Paige M Novak - One of the best experts on this subject based on the ideXlab platform.

  • industrial symbiosis corn ethanol fermentation hydrothermal carbonization and anaerobic digestion
    Biotechnology and Bioengineering, 2013
    Co-Authors: Brandon M Wood, Lindsey R Jader, Frederick J Schendel, Nicholas J Hahn, Kenneth J Valentas, Patrick J Mcnamara, Paige M Novak, Steven M Heilmann
    Abstract:

    The production of dry-grind corn ethanol results in the generation of intermediate products, thin and whole stillage, which require energy-intensive downstream processing for conversion into commercial animal feed products. Hydrothermal carbonization of thin and whole stillage coupled with anaerobic digestion was investigated as alternative processing methods that could benefit the industry. By substantially eliminating evaporation of water, reductions in downstream energy consumption from 65% to 73% were achieved while generating hydrochar, fatty acids, treated process water, and biogas co-products providing new opportunities for the industry. Processing whole stillage in this manner produced the four co-products, eliminated centrifugation and evaporation, and substantially reduced drying. With thin stillage, all four co-products were again produced, as well as a high quality animal feed. Anaerobic digestion of the aqueous product stream from the hydrothermal carbonization of thin stillage reduced chemical oxygen demand (COD) by more than 90% and converted 83% of the initial COD to methane. Internal use of this biogas could entirely fuel the HTC process and reduce overall natural gas usage. Biotechnol. Bioeng. 2013;110: 2624–2632. © 2013 Wiley Periodicals, Inc.

  • Industrial symbiosis: Corn ethanol fermentation, hydrothermal carbonization, and anaerobic digestion
    Biotechnology and Bioengineering, 2013
    Co-Authors: Brandon M Wood, Lindsey R Jader, Frederick J Schendel, Nicholas J Hahn, Kenneth J Valentas, Patrick J Mcnamara, Paige M Novak, Steven M Heilmann
    Abstract:

    The production of dry-grind corn ethanol results in the generation of intermediate products, thin and whole stillage, which require energy-intensive downstream processing for conversion into commercial animal feed products. Hydrothermal carbonization of thin and whole stillage coupled with anaerobic digestion was investigated as alternative processing methods that could benefit the industry. By substantially eliminating evaporation of water, reductions in downstream energy consumption from 65% to 73% were achieved while generating hydrochar, fatty acids, treated process water, and biogas co-products providing new opportunities for the industry. Processing whole stillage in this manner produced the four co-products, eliminated centrifugation and evaporation, and substantially reduced drying. With thin stillage, all four co-products were again produced, as well as a high quality animal feed. Anaerobic digestion of the aqueous product stream from the hydrothermal carbonization of thin stillage reduced chemical oxygen demand (COD) by more than 90% and converted 83% of the initial COD to methane. Internal use of this biogas could entirely fuel the HTC process and reduce overall natural gas usage.

Patrick J Mcnamara - One of the best experts on this subject based on the ideXlab platform.

  • industrial symbiosis corn ethanol fermentation hydrothermal carbonization and anaerobic digestion
    Biotechnology and Bioengineering, 2013
    Co-Authors: Brandon M Wood, Lindsey R Jader, Frederick J Schendel, Nicholas J Hahn, Kenneth J Valentas, Patrick J Mcnamara, Paige M Novak, Steven M Heilmann
    Abstract:

    The production of dry-grind corn ethanol results in the generation of intermediate products, thin and whole stillage, which require energy-intensive downstream processing for conversion into commercial animal feed products. Hydrothermal carbonization of thin and whole stillage coupled with anaerobic digestion was investigated as alternative processing methods that could benefit the industry. By substantially eliminating evaporation of water, reductions in downstream energy consumption from 65% to 73% were achieved while generating hydrochar, fatty acids, treated process water, and biogas co-products providing new opportunities for the industry. Processing whole stillage in this manner produced the four co-products, eliminated centrifugation and evaporation, and substantially reduced drying. With thin stillage, all four co-products were again produced, as well as a high quality animal feed. Anaerobic digestion of the aqueous product stream from the hydrothermal carbonization of thin stillage reduced chemical oxygen demand (COD) by more than 90% and converted 83% of the initial COD to methane. Internal use of this biogas could entirely fuel the HTC process and reduce overall natural gas usage. Biotechnol. Bioeng. 2013;110: 2624–2632. © 2013 Wiley Periodicals, Inc.

  • Industrial symbiosis: Corn ethanol fermentation, hydrothermal carbonization, and anaerobic digestion
    Biotechnology and Bioengineering, 2013
    Co-Authors: Brandon M Wood, Lindsey R Jader, Frederick J Schendel, Nicholas J Hahn, Kenneth J Valentas, Patrick J Mcnamara, Paige M Novak, Steven M Heilmann
    Abstract:

    The production of dry-grind corn ethanol results in the generation of intermediate products, thin and whole stillage, which require energy-intensive downstream processing for conversion into commercial animal feed products. Hydrothermal carbonization of thin and whole stillage coupled with anaerobic digestion was investigated as alternative processing methods that could benefit the industry. By substantially eliminating evaporation of water, reductions in downstream energy consumption from 65% to 73% were achieved while generating hydrochar, fatty acids, treated process water, and biogas co-products providing new opportunities for the industry. Processing whole stillage in this manner produced the four co-products, eliminated centrifugation and evaporation, and substantially reduced drying. With thin stillage, all four co-products were again produced, as well as a high quality animal feed. Anaerobic digestion of the aqueous product stream from the hydrothermal carbonization of thin stillage reduced chemical oxygen demand (COD) by more than 90% and converted 83% of the initial COD to methane. Internal use of this biogas could entirely fuel the HTC process and reduce overall natural gas usage.