Structure-Function Relationship

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 978573 Experts worldwide ranked by ideXlab platform

Denis L.j. Lafontaine - One of the best experts on this subject based on the ideXlab platform.

  • the nucleolus structure function Relationship in rna metabolism
    Wiley Interdisciplinary Reviews - Rna, 2010
    Co-Authors: Daniele Hernandezverdun, Valentina Sirri, Marc Thiry, Pascal Roussel, Denis L.j. Lafontaine
    Abstract:

    The nucleolus is the ribosome factory of the cells. This is the nuclear domain where ribosomal RNAs are synthesized, processed, and assembled with ribosomal proteins. Here we describe the classical tripartite organization of the nucleolus in mammals, reflecting ribosomal gene transcription and pre-ribosomal RNA (pre-rRNA) processing efficiency: fibrillar center, dense fibrillar component, and granular component. We review the nucleolar organization across evolution from the bipartite organization in yeast to the tripartite organization in humans. We discuss the basic principles of nucleolar assembly and nucleolar structure/function Relationship in RNA metabolism. The control of nucleolar assembly is presented as well as the role of pre-existing machineries and pre-rRNAs inherited from the previous cell cycle. In addition, nucleoli carry many essential extra ribosomal functions and are closely linked to cellular homeostasis and human health. The last part of this review presents recent advances in nucleolar dysfunctions in human pathology such as cancer and virus infections that modify the nucleolar organization.  2010 John Wiley & Sons, Ltd. WIREs RNA 2010 1 415‐431

  • The nucleolus: structure/function Relationship in RNA metabolism
    Wiley Interdisciplinary Reviews - Rna, 2010
    Co-Authors: Danièle Hernandez-verdun, Valentina Sirri, Marc Thiry, Pascal Roussel, Denis L.j. Lafontaine
    Abstract:

    The nucleolus is the ribosome factory of the cells. This is the nuclear domain where ribosomal RNAs are synthesized, processed, and assembled with ribosomal proteins. Here we describe the classical tripartite organization of the nucleolus in mammals, reflecting ribosomal gene transcription and pre-ribosomal RNA (pre-rRNA) processing efficiency: fibrillar center, dense fibrillar component, and granular component. We review the nucleolar organization across evolution from the bipartite organization in yeast to the tripartite organization in humans. We discuss the basic principles of nucleolar assembly and nucleolar structure/function Relationship in RNA metabolism. The control of nucleolar assembly is presented as well as the role of pre-existing machineries and pre-rRNAs inherited from the previous cell cycle. In addition, nucleoli carry many essential extra ribosomal functions and are closely linked to cellular homeostasis and human health. The last part of this review presents recent advances in nucleolar dysfunctions in human pathology such as cancer and virus infections that modify the nucleolar organization.  2010 John Wiley & Sons, Ltd. WIREs RNA 2010 1 415‐431

Daniele Hernandezverdun - One of the best experts on this subject based on the ideXlab platform.

  • the nucleolus structure function Relationship in rna metabolism
    Wiley Interdisciplinary Reviews - Rna, 2010
    Co-Authors: Daniele Hernandezverdun, Valentina Sirri, Marc Thiry, Pascal Roussel, Denis L.j. Lafontaine
    Abstract:

    The nucleolus is the ribosome factory of the cells. This is the nuclear domain where ribosomal RNAs are synthesized, processed, and assembled with ribosomal proteins. Here we describe the classical tripartite organization of the nucleolus in mammals, reflecting ribosomal gene transcription and pre-ribosomal RNA (pre-rRNA) processing efficiency: fibrillar center, dense fibrillar component, and granular component. We review the nucleolar organization across evolution from the bipartite organization in yeast to the tripartite organization in humans. We discuss the basic principles of nucleolar assembly and nucleolar structure/function Relationship in RNA metabolism. The control of nucleolar assembly is presented as well as the role of pre-existing machineries and pre-rRNAs inherited from the previous cell cycle. In addition, nucleoli carry many essential extra ribosomal functions and are closely linked to cellular homeostasis and human health. The last part of this review presents recent advances in nucleolar dysfunctions in human pathology such as cancer and virus infections that modify the nucleolar organization.  2010 John Wiley & Sons, Ltd. WIREs RNA 2010 1 415‐431

Tadayuki Imanaka - One of the best experts on this subject based on the ideXlab platform.

  • a study on the structure function Relationship of lipopeptide biosurfactants
    Biochimica et Biophysica Acta, 2000
    Co-Authors: Masaaki Morikawa, Yoshihiko Hirata, Tadayuki Imanaka
    Abstract:

    Arthrofactin (AF) and surfactin (SF) are the most effective cyclic lipopeptide biosurfactants ever reported. Linear AF and linear SF were prepared by saponification of lactone ring. The oil displacement activities decreased to one third of their respective original values. When residues of both an aspartic acid and a glutamic acid of SF were methylated or amidated, the activity increased by 20%, although their water solubility was lost. When these amino acid residues were modified by aminomethane sulfonic acid, the activity was drastically decreased probably owing to charge repulsion and structural distortion inhibiting micelle formation. Both AF and SF expressed higher activity under alkaline conditions than acidic conditions. AF was more resistant to acidic conditions than SF and it kept high activity even under pH 0.5. Although SF drastically reduced its activity under acidic conditions, surfactin-Asp/Glu-amido ester and surfactin-Asp/Glu-methyl ester retained similar activities irrespective of the pH change. A couple of conformers of SF prepared by reverse-phase HPLC showed the same oil displacement activity but different surface tension-reducing activity. AF was produced as a series of different fatty acid chain lengths (from C8 to C12). Among them, AF with fatty acid chain length of C10, which was the main product of the strain, showed the highest activity.

Silvère Baron - One of the best experts on this subject based on the ideXlab platform.

  • Flavonoids differentially modulate liver X receptors activity—Structure-Function Relationship analysis
    Journal of Steroid Biochemistry and Molecular Biology, 2019
    Co-Authors: Allan Fouache, Nada Zabaiou, Cyrille De Joussineau, Laurent Morel, Sandrine Silvente-poirot, Amira Namsi, Gérard Lizard, Marc Poirot, Makoto Makishima, Silvère Baron
    Abstract:

    Liver X receptors (LXRs) α (NR1H3) and β (NR1H2) are nuclear receptors that have been involved in the regulation of many physiological processes, principally in the control of cholesterol homeostasis, as well as in the control of the cell death and proliferation balance. These receptors are thus promising therapeutic targets in various pathologies such as dyslipidemia, atherosclerosis, diabetes and/or cancers. These receptors are known to be activated by specific oxysterol compounds. The screening for LXR-specific ligands is a challenging process: indeed, these molecules should present a specificity towards each LXR-isoform. Because some natural products have significant effects in the regulation of the LXR-regulated homeostasis and are enriched in flavonoids, we have decided to test in cell culture the effects of 4 selected flavonoids (galangin, quercetin, apigenin and naringenin) on the modulation of LXR activity using double-hybrid experiments. In silico, molecular docking suggests specific binding pattern between agonistic and antagonistic molecules. Altogether, these results allow a better understanding of the ligand binding pocket of LXRα/β. They also improve our knowledge about flavonoid mechanism of action, allowing the selection and development of better LXR selective ligands.

  • flavonoids differentially modulate liver x receptors activity structure function Relationship analysis
    The Journal of Steroid Biochemistry and Molecular Biology, 2019
    Co-Authors: Allan Fouache, Nada Zabaiou, Cyrille De Joussineau, Laurent Morel, Amira Namsi, Gérard Lizard, Marc Poirot, Makoto Makishima, Sandrine Silventepoirot, Silvère Baron
    Abstract:

    Abstract Liver X receptors (LXRs) α (NR1H3) and β (NR1H2) are nuclear receptors that have been involved in the regulation of many physiological processes, principally in the control of cholesterol homeostasis, as well as in the control of the cell death and proliferation balance. These receptors are thus promising therapeutic targets in various pathologies such as dyslipidemia, atherosclerosis, diabetes and/or cancers. These receptors are known to be activated by specific oxysterol compounds. The screening for LXR-specific ligands is a challenging process: indeed, these molecules should present a specificity towards each LXR-isoform. Because some natural products have significant effects in the regulation of the LXR-regulated homeostasis and are enriched in flavonoids, we have decided to test in cell culture the effects of 4 selected flavonoids (galangin, quercetin, apigenin and naringenin) on the modulation of LXR activity using double-hybrid experiments. In silico, molecular docking suggests specific binding pattern between agonistic and antagonistic molecules. Altogether, these results allow a better understanding of the ligand binding pocket of LXRα/β. They also improve our knowledge about flavonoid mechanism of action, allowing the selection and development of better LXR selective ligands.

Joanne Recchia - One of the best experts on this subject based on the ideXlab platform.

  • Structure—Function Relationship among Quillaja Saponins Serving as Excipients for Nasal and Ocular Delivery of Insulin
    Journal of Pharmaceutical Sciences, 1996
    Co-Authors: Dennis J. Pillion, Jennifer A. Amsden, Charlotte R. Kensil, Joanne Recchia
    Abstract:

    Abstract The purpose of this investigation was to explore the structure–function Relationship among naturally occurring Quillaja saponins and derivatives for their ability to stimulate insulin delivery from nosedrops and eyedrops and to test the hypothesis that stimulation of peptide drug delivery was correlated with surfactant strength. Native saponins, including QS-21, were purified from an aqueous extract of Quillaja saponaria bark by adsorption chromatography and HPLC. Native saponins were then deacylated by mild alkaline hydrolysis to form DS-1 and DS-2, derivatives that are smaller and more hydrophilic than their parent compounds. DS-1 was further treated either to reduce an aldehyde residue to form DS-1(R) or to remove the fucose-containing oligosaccharide to form QH-957. Rats receiving eyedrops or nosedrops formulated with insulin, but without any Quillaja saponins, showed no hypoglycemic response. Rats receiving eyedrops or nosedrops formulated with insulin plus saponins showed a dose-dependent hypoglycemic response, with the following rank order: QS-21 > DS-1 > DS-1(R) > DS-2 > QH-957. Surfactant strength was determined by measurement of the critical micellar concentration (cmc) and hemolysis of sheep erythrocytes. The cmc was lowest for the parent saponins QS-21 and QS-18, and increased for the deacylated saponin derivatives DS-1, DS-2, and QH-957; hemolysis of sheep erythrocytes was observed at low concentrations (∼0.006 mM) of the parent saponins, QS-21 and QS-18, at intermediate concentrations (0.06–0.08 mM) of DS-1 and DS-2, and at higher concentrations of DS-1(R) (0.45 mM) and QH-957 (1.5 mM). Hence, efficacy as an absorption-enhancing agent was greatest in those saponins with the lowest hemolytic titers and cmc values. However, this Relationship was not a strict one, because DS-1, which differs from DS-2 only in the absence of one glucose residue, was significantly more potent than DS-2 in stimulating the absorption of insulin. DS-1 and DS-2 share a similar cmc and hemolytic titer, so this difference in efficacy must be due to some specificity beyond simple surfactant strength. Furthermore, DS-1 does not trigger an immune response when administered to animals, whereas QS-21 is a strong immune system activator. Therefore, DS-1 has emerged as an interesting candidate for inclusion in an eyedrop or nosedrop formulation.

  • Structure—Function Relationship among Quillaja Saponins Serving as Excipients for Nasal and Ocular Delivery of Insulin
    Journal of Pharmaceutical Sciences, 1996
    Co-Authors: Dennis J. Pillion, Jennifer A. Amsden, Charlotte R. Kensil, Joanne Recchia
    Abstract:

    The purpose of this investigation was to explore the Structure-Function Relationship among naturally occurring Quillaja saponins and derivatives for their ability to stimulate insulin delivery from nosedrops and eyedrops and to test the hypothesis that stimulation of peptide drug delivery was correlated with surfactant strength. Native saponins, including QS-21, were purified from an aqueous extract of Quillaja saponaria bark by adsorption chromatography and HPLC. Native saponins were then deacylated by mild alkaline hydrolysis to form DS-1 and DS-2, derivatives that are smaller and more hydrophilic than their parent compounds. DS-1 was further treated either to reduce an aldehyde residue to form DS-1(R) or to remove the fucose-containing oligosaccharide to form QH-957. Rats receiving eyedrops or nosedrops formulated with insulin, but without any Quillaja saponins, showed no hypoglycemic response. Rats receiving eyedrops or nosedrops formulated with insulin plus saponins showed a dose-dependent hypoglycemic response, with the following rank order: QS-21 > DS-1 > DS-1(R) > DS-2 > QH-957. Surfactant strength was determined by measurement of the critical micellar concentration (cmc) and hemolysis of sheep erythrocytes. The cmc was lowest for the parent saponins QS-21 and QS-18, and increased for the deacylated saponin derivatives DS-1, DS-2, and QH-957; hemolysis of sheep erythrocytes was observed at low concentrations (approximately 0.006 mM) of the parent saponins, QS-21 and QS-18, at intermediate concentrations (0.06-0.08 mM) of DS-1 and DS-2, and at higher concentrations of DS-1(R) (0.45 mM) and QH-957 (1.5 mM). Hence, efficacy as an absorption-enhancing agent was greatest in those saponins with the lowest hemolytic titers and cmc values. However, this Relationship was not a strict one, because DS-1, which differs from DS-2 only in the absence of one glucose residue, was significantly more potent than DS-2 in stimulating the absorption of insulin. DS-1 and DS-2 share a similar cmc and hemolytic titer, so this difference in efficacy must be due to some specificity beyond simple surfactant strength. Furthermore, DS-1 does not trigger an immune response when administered to animals, whereas QS-21 is a strong immune system activator. Therefore, DS-1 has emerged as an interesting candidate for inclusion in an eyedrop or nosedrop formulation.

  • structure function Relationship among quillaja saponins serving as excipients for nasal and ocular delivery of insulin
    Journal of Pharmaceutical Sciences, 1996
    Co-Authors: Dennis J. Pillion, Jennifer A. Amsden, Charlotte R. Kensil, Joanne Recchia
    Abstract:

    The purpose of this investigation was to explore the Structure-Function Relationship among naturally occurring Quillaja saponins and derivatives for their ability to stimulate insulin delivery from nosedrops and eyedrops and to test the hypothesis that stimulation of peptide drug delivery was correlated with surfactant strength. Native saponins, including QS-21, were purified from an aqueous extract of Quillaja saponaria bark by adsorption chromatography and HPLC. Native saponins were then deacylated by mild alkaline hydrolysis to form DS-1 and DS-2, derivatives that are smaller and more hydrophilic than their parent compounds. DS-1 was further treated either to reduce an aldehyde residue to form DS-1(R) or to remove the fucose-containing oligosaccharide to form QH-957. Rats receiving eyedrops or nosedrops formulated with insulin, but without any Quillaja saponins, showed no hypoglycemic response. Rats receiving eyedrops or nosedrops formulated with insulin plus saponins showed a dose-dependent hypoglycemic response, with the following rank order: QS-21 > DS-1 > DS-1(R) > DS-2 > QH-957. Surfactant strength was determined by measurement of the critical micellar concentration (cmc) and hemolysis of sheep erythrocytes. The cmc was lowest for the parent saponins QS-21 and QS-18, and increased for the deacylated saponin derivatives DS-1, DS-2, and QH-957; hemolysis of sheep erythrocytes was observed at low concentrations (approximately 0.006 mM) of the parent saponins, QS-21 and QS-18, at intermediate concentrations (0.06-0.08 mM) of DS-1 and DS-2, and at higher concentrations of DS-1(R) (0.45 mM) and QH-957 (1.5 mM). Hence, efficacy as an absorption-enhancing agent was greatest in those saponins with the lowest hemolytic titers and cmc values. However, this Relationship was not a strict one, because DS-1, which differs from DS-2 only in the absence of one glucose residue, was significantly more potent than DS-2 in stimulating the absorption of insulin. DS-1 and DS-2 share a similar cmc and hemolytic titer, so this difference in efficacy must be due to some specificity beyond simple surfactant strength. Furthermore, DS-1 does not trigger an immune response when administered to animals, whereas QS-21 is a strong immune system activator. Therefore, DS-1 has emerged as an interesting candidate for inclusion in an eyedrop or nosedrop formulation.