Subalpine Forest

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 360 Experts worldwide ranked by ideXlab platform

Russell K. Monson - One of the best experts on this subject based on the ideXlab platform.

  • climate controls over ecosystem metabolism insights from a fifteen year inductive artificial neural network synthesis for a Subalpine Forest
    Oecologia, 2017
    Co-Authors: Loren P Albert, Sean P Burns, Travis E Huxman, Trevor F Keenan, Russell K. Monson
    Abstract:

    Eddy covariance (EC) datasets have provided insight into climate determinants of net ecosystem productivity (NEP) and evapotranspiration (ET) in natural ecosystems for decades, but most EC studies were published in serial fashion such that one study’s result became the following study’s hypothesis. This approach reflects the hypothetico-deductive process by focusing on previously derived hypotheses. A synthesis of this type of sequential inference reiterates subjective biases and may amplify past assumptions about the role, and relative importance, of controls over ecosystem metabolism. Long-term EC datasets facilitate an alternative approach to synthesis: the use of inductive data-based analyses to re-examine past deductive studies of the same ecosystem. Here we examined the seasonal climate determinants of NEP and ET by analyzing a 15-year EC time-series from a Subalpine Forest using an ensemble of Artificial Neural Networks (ANNs) at the half-day (daytime/nighttime) time-step. We extracted relative rankings of climate drivers and driver–response relationships directly from the dataset with minimal a priori assumptions. The ANN analysis revealed temperature variables as primary climate drivers of NEP and daytime ET, when all seasons are considered, consistent with the assembly of past studies. New relations uncovered by the ANN approach include the role of soil moisture in driving daytime NEP during the snowmelt period, the nonlinear response of NEP to temperature across seasons, and the low relevance of summer rainfall for NEP or ET at the same daytime/nighttime time step. These new results offer a more complete perspective of climate–ecosystem interactions at this site than traditional deductive analyses alone.

  • the niwot ridge Subalpine Forest us nr1 ameriflux site part 1 data acquisition and site record keeping
    Geoscientific Instrumentation Methods and Data Systems Discussions, 2016
    Co-Authors: Sean P Burns, Peter D Blanken, Gordon D Maclean, Steven P Oncley, S R Semmer, Russell K. Monson
    Abstract:

    Abstract. The Niwot Ridge Subalpine Forest AmeriFlux site (US-NR1) has been measuring eddy-covariance ecosystem fluxes of carbon dioxide, heat, and water vapor since 1 November 1998. Throughout this 17-year period there have been changes to the instrumentation and improvements to the data acquisition system. Here, in Part 1 of this three-part series of papers, we describe the hardware and software used for data-collection and metadata documentation. We made changes to the data acquisition system that aimed to reduce the system complexity, increase redundancy, and be as independent as possible from any network outages. Changes to facilitate these improvements were (1) switching to a PC/104-based computer running the National Center for Atmospheric Research (NCAR) In-Situ Data Acquisition Software (NIDAS) that saves the high-frequency data locally and over the network, and (2) time-tagging individual 10 Hz serial data samples using network time protocol (NTP) coupled to a GPS-based clock, providing a network-independent, accurate time base. Since making these improvements almost 2 years ago, the successful capture of high-rate data has been better than 99.98 %. We also provide philosophical concepts that shaped our design of the data system and are applicable to many different types of environmental data collection.

  • the influence of warm season precipitation on the diel cycle of the surface energy balance and carbon dioxide at a colorado Subalpine Forest site
    Biogeosciences, 2015
    Co-Authors: Sean P Burns, Peter D Blanken, A Turnipseed, Russell K. Monson
    Abstract:

    Abstract. Precipitation changes the physical and biological characteristics of an ecosystem. Using a precipitation-based conditional sampling technique and a 14 year data set from a 25 m micrometeorological tower in a high-elevation Subalpine Forest, we examined how warm-season precipitation affected the above-canopy diel cycle of wind and turbulence, net radiation Rnet, ecosystem eddy covariance fluxes (sensible heat H, latent heat LE, and CO2 net ecosystem exchange NEE) and vertical profiles of scalars (air temperature Ta, specific humidity q, and CO2 dry mole fraction χc). This analysis allowed us to examine how precipitation modified these variables from hourly (i.e., the diel cycle) to multi-day time-scales (i.e., typical of a weather-system frontal passage). During mid-day we found the following: (i) even though precipitation caused mean changes on the order of 50–70 % to Rnet, H, and LE, the surface energy balance (SEB) was relatively insensitive to precipitation with mid-day closure values ranging between 90 and 110 %, and (ii) compared to a typical dry day, a day following a rainy day was characterized by increased ecosystem uptake of CO2 (NEE increased by a 10 %), enhanced evaporative cooling (mid-day LE increased by a 30 W m−2), and a smaller amount of sensible heat transfer (mid-day H decreased by a 70 W m−2). Based on the mean diel cycle, the evaporative contribution to total evapotranspiration was, on average, around 6 % in dry conditions and between 15 and 25 % in partially wet conditions. Furthermore, increased LE lasted at least 18 h following a rain event. At night, even though precipitation (and accompanying clouds) reduced the magnitude of Rnet, LE increased from a 10 to over 20 W m−2 due to increased evaporation. Any effect of precipitation on the nocturnal SEB closure and NEE was overshadowed by atmospheric phenomena such as horizontal advection and decoupling that create measurement difficulties. Above-canopy mean χc during wet conditions was found to be about 2–3 μmol mol−1 larger than χc on dry days. This difference was fairly constant over the full diel cycle suggesting that it was due to synoptic weather patterns (different air masses and/or effects of barometric pressure). Finally, the effect of clouds on the timing and magnitude of daytime ecosystem fluxes is described.

  • biotic and abiotic controls on biogenic volatile organic compound fluxes from a Subalpine Forest floor
    Journal of Geophysical Research, 2014
    Co-Authors: Christopher M Gray, Russell K. Monson, Noah Fierer
    Abstract:

    Nonmethane biogenic volatile organic compounds (BVOCs) play key roles in the atmosphere, where they can influence a wide range of chemical processes, and in soils, where they can alter the rates of biogeochemical cycles and impact the growth of plants and soil organisms. However, the diversity and quantities of BVOCs released from or taken up by soils remain poorly characterized as do the biotic and abiotic controls on these fluxes. Here we used proton transfer reaction mass spectrometry to quantify BVOC flux rates from soils with and without active root systems in a Subalpine coniferous Forest. The total measured BVOC flux averaged 102 nmol m−2 h−1 (an estimated 2.0 µg-C m−2 h−1). The individual BVOCs with the highest net emissions from soil included monoterpenes and methanol (averaging 646 and 641 ng-C m−2 h−1, respectively) while soil represented a net sink of isoprene (−98 ng-C m−2 h−1) and formaldehyde (−37 ng-C m−2 h−1). Tree roots, directly or indirectly, contributed an average of 53% of the total carbon emitted from the soil as BVOCs, with methanol and acetaldehyde among those BVOCs most strongly associated with active root presence. The fluxes of most of the dominant BVOCs emitted from soil, including methanol, increased linearly with increasing temperature. Together the fluxes of certain BVOCs into or out of the Forest floor (particularly methanol, isoprene, and monoterpenes) are likely relevant to ecosystem-level processes and belowground ecology, but these fluxes are highly variable and are strongly controlled by both root presence and soil abiotic conditions.

  • forecasting net ecosystem co2 exchange in a Subalpine Forest using model data assimilation combined with simulated climate and weather generation
    Journal of Geophysical Research, 2013
    Co-Authors: Laura E Scottdenton, Sean P Burns, Russell K. Monson, David S Schimel, David J P Moore, N A Rosenbloom, T G F Kittel
    Abstract:

    [1] Forecasting the carbon uptake potential of terrestrial ecosystems in the face of future climate change has proven challenging. Process models, which have been increasingly used to study ecosystem-atmosphere carbon and water exchanges when conditioned with tower-based eddy covariance data, have the potential to inform us about biogeochemical processes in future climate regimes, but only if we can reconcile the spatial and temporal scales used for observed fluxes and projected climate. Here, we used weather generator and ecosystem process models conditioned on observed weather dynamics and carbon/water fluxes, and embedded them within climate projections from a suite of six Earth Systems Models. Using this combination of models, we studied carbon cycle processes in a Subalpine Forest within the context of future (2080–2099) climate regimes. The assimilation of daily averaged, observed net ecosystem CO2 exchange (NEE) and evapotranspiration (ET) into the ecosystem process model resulted in retrieval of projected NEE with a level of accuracy that was similar to that following the assimilation of half-daily averaged observations; the assimilation of 30 min averaged fluxes or monthly averaged fluxes caused degradation in the model's capacity to accurately simulate seasonal patterns in observed NEE. Using daily averaged flux data with daily averaged weather data projected for the period 2080–2099, we predicted greater Forest net CO2 uptake in response to a lengthening of the growing season. These results contradict our previous observations of reduced CO2 uptake in response to longer growing seasons in the current (1999–2008) climate regime. The difference between these analyses is due to a projected increase in the frequency of rain versus snow during warmer winters of the future. Our results demonstrate the sensitivity of modeled processes to local variation in meteorology, which is often left unresolved in traditional approaches to earth systems modeling, and the importance of maintaining similarity in the timescales used in ecosystem process models driven by downscaled climate projections.

Sean P Burns - One of the best experts on this subject based on the ideXlab platform.

  • limitations to winter and spring photosynthesis of a rocky mountain Subalpine Forest
    Agricultural and Forest Meteorology, 2018
    Co-Authors: David R Bowling, Sean P Burns, Barry A Logan, Koen Hufkens, Donald M Aubrecht, Andrew D Richardson, William R L Anderegg, Peter D Blanken, David P Eiriksson
    Abstract:

    Abstract Temperate and boreal conifer Forests are dormant for many months during the cold season. Climate change is altering the winter environment, with increased temperature, altered precipitation, and earlier snowmelt in many locations. If significant enough, these changes may alter patterns of dormancy and activity of evergreens. Here we studied the factors limiting photosynthetic activity of a high-elevation Subalpine Forest that has undergone substantial warming in recent decades. We tested the hypothesis that this warming has been significant enough to allow photosynthesis during sunny warm days in winter. Using thermal imagery, we found that foliage in winter was sometimes near the temperature optimum for photosynthesis, but no net carbon gain occurred for most of the cold season. Water transport was limited by blockage of sap transport by frozen boles, but not by frozen soils. Foliar carotenoid content was much higher during winter, driven largely by increases in the pool size of the photoprotective xanthophyll cycle. There was no seasonal change in chlorophyll or lutein content. Net carbon uptake began only as boles thawed, with no difference in timing among tree species, and the spring increase in canopy-level photosynthetic capacity occurred before sap transport was detected. The seasonality of gross primary productivity (GPP) was strongly linked to seasonality of xanthophyll cycle deepoxidation state in all species. Seasonality of GPP was detectable with two metrics of canopy color – the Green Chromatic Coordinate and Green-Red Vegetation Index (a proxy for the newly proposed MODIS-based chlorophyll/carotenoid index or CCI). Both indices were significantly correlated with GPP. Together these results indicate the potential for airborne or near-surface remote sensing of leaf color to serve as a metric of photosynthetic activity in evergreen Forests, and to monitor physiological changes associated with the progression in and out of winter dormancy.

  • climate controls over ecosystem metabolism insights from a fifteen year inductive artificial neural network synthesis for a Subalpine Forest
    Oecologia, 2017
    Co-Authors: Loren P Albert, Sean P Burns, Travis E Huxman, Trevor F Keenan, Russell K. Monson
    Abstract:

    Eddy covariance (EC) datasets have provided insight into climate determinants of net ecosystem productivity (NEP) and evapotranspiration (ET) in natural ecosystems for decades, but most EC studies were published in serial fashion such that one study’s result became the following study’s hypothesis. This approach reflects the hypothetico-deductive process by focusing on previously derived hypotheses. A synthesis of this type of sequential inference reiterates subjective biases and may amplify past assumptions about the role, and relative importance, of controls over ecosystem metabolism. Long-term EC datasets facilitate an alternative approach to synthesis: the use of inductive data-based analyses to re-examine past deductive studies of the same ecosystem. Here we examined the seasonal climate determinants of NEP and ET by analyzing a 15-year EC time-series from a Subalpine Forest using an ensemble of Artificial Neural Networks (ANNs) at the half-day (daytime/nighttime) time-step. We extracted relative rankings of climate drivers and driver–response relationships directly from the dataset with minimal a priori assumptions. The ANN analysis revealed temperature variables as primary climate drivers of NEP and daytime ET, when all seasons are considered, consistent with the assembly of past studies. New relations uncovered by the ANN approach include the role of soil moisture in driving daytime NEP during the snowmelt period, the nonlinear response of NEP to temperature across seasons, and the low relevance of summer rainfall for NEP or ET at the same daytime/nighttime time step. These new results offer a more complete perspective of climate–ecosystem interactions at this site than traditional deductive analyses alone.

  • the niwot ridge Subalpine Forest us nr1 ameriflux site part 1 data acquisition and site record keeping
    Geoscientific Instrumentation Methods and Data Systems Discussions, 2016
    Co-Authors: Sean P Burns, Peter D Blanken, Gordon D Maclean, Steven P Oncley, S R Semmer, Russell K. Monson
    Abstract:

    Abstract. The Niwot Ridge Subalpine Forest AmeriFlux site (US-NR1) has been measuring eddy-covariance ecosystem fluxes of carbon dioxide, heat, and water vapor since 1 November 1998. Throughout this 17-year period there have been changes to the instrumentation and improvements to the data acquisition system. Here, in Part 1 of this three-part series of papers, we describe the hardware and software used for data-collection and metadata documentation. We made changes to the data acquisition system that aimed to reduce the system complexity, increase redundancy, and be as independent as possible from any network outages. Changes to facilitate these improvements were (1) switching to a PC/104-based computer running the National Center for Atmospheric Research (NCAR) In-Situ Data Acquisition Software (NIDAS) that saves the high-frequency data locally and over the network, and (2) time-tagging individual 10 Hz serial data samples using network time protocol (NTP) coupled to a GPS-based clock, providing a network-independent, accurate time base. Since making these improvements almost 2 years ago, the successful capture of high-rate data has been better than 99.98 %. We also provide philosophical concepts that shaped our design of the data system and are applicable to many different types of environmental data collection.

  • measuring spatiotemporal variation in snow optical grain size under a Subalpine Forest canopy using contact spectroscopy
    Water Resources Research, 2016
    Co-Authors: Noah P Molotch, Sean P Burns, David M Barnard, Thomas H Painter
    Abstract:

    The distribution of Forest cover exerts strong controls on the spatiotemporal distribution of snow accumulation and snowmelt. The physical processes that govern these controls are poorly understood given a lack of detailed measurements of snow states. In this study, we address one of many measurement gaps by using contact spectroscopy to measure snow optical grain size at high spatial resolution in trenches dug between tree boles in a Subalpine Forest. Trenches were collocated with continuous measurements of snow depth and vertical profiles of snow temperature and supplemented with manual measurements of snow temperature, geometric grain size, grain type, and density from trench walls. There was a distinct difference in snow optical grain size between winter and spring periods. In winter and early spring, when facetted snow crystal types were dominant, snow optical grain size was 6% larger in canopy gaps versus under canopy positions; a difference that was smaller than the measurement uncertainty. By midspring, the magnitude of snow optical grain size differences increased dramatically and patterns of snow optical grain size became highly directional with 34% larger snow grains in areas south versus north of trees. In winter, snow temperature gradients were up to 5–15°C m−1 greater under the canopy due to shallower snow accumulation. However, in canopy gaps, snow depths were greater in fall and early winter and therefore more significant kinetic growth metamorphism occurred relative to under canopy positions, resulting in larger snow grains in canopy gaps. Our findings illustrate the novelty of our method of measuring snow optical grain size, allowing for future studies to advance the understanding of how Forest and meteorological conditions interact to impact snowpack evolution.

  • the influence of warm season precipitation on the diel cycle of the surface energy balance and carbon dioxide at a colorado Subalpine Forest site
    Biogeosciences, 2015
    Co-Authors: Sean P Burns, Peter D Blanken, A Turnipseed, Russell K. Monson
    Abstract:

    Abstract. Precipitation changes the physical and biological characteristics of an ecosystem. Using a precipitation-based conditional sampling technique and a 14 year data set from a 25 m micrometeorological tower in a high-elevation Subalpine Forest, we examined how warm-season precipitation affected the above-canopy diel cycle of wind and turbulence, net radiation Rnet, ecosystem eddy covariance fluxes (sensible heat H, latent heat LE, and CO2 net ecosystem exchange NEE) and vertical profiles of scalars (air temperature Ta, specific humidity q, and CO2 dry mole fraction χc). This analysis allowed us to examine how precipitation modified these variables from hourly (i.e., the diel cycle) to multi-day time-scales (i.e., typical of a weather-system frontal passage). During mid-day we found the following: (i) even though precipitation caused mean changes on the order of 50–70 % to Rnet, H, and LE, the surface energy balance (SEB) was relatively insensitive to precipitation with mid-day closure values ranging between 90 and 110 %, and (ii) compared to a typical dry day, a day following a rainy day was characterized by increased ecosystem uptake of CO2 (NEE increased by a 10 %), enhanced evaporative cooling (mid-day LE increased by a 30 W m−2), and a smaller amount of sensible heat transfer (mid-day H decreased by a 70 W m−2). Based on the mean diel cycle, the evaporative contribution to total evapotranspiration was, on average, around 6 % in dry conditions and between 15 and 25 % in partially wet conditions. Furthermore, increased LE lasted at least 18 h following a rain event. At night, even though precipitation (and accompanying clouds) reduced the magnitude of Rnet, LE increased from a 10 to over 20 W m−2 due to increased evaporation. Any effect of precipitation on the nocturnal SEB closure and NEE was overshadowed by atmospheric phenomena such as horizontal advection and decoupling that create measurement difficulties. Above-canopy mean χc during wet conditions was found to be about 2–3 μmol mol−1 larger than χc on dry days. This difference was fairly constant over the full diel cycle suggesting that it was due to synoptic weather patterns (different air masses and/or effects of barometric pressure). Finally, the effect of clouds on the timing and magnitude of daytime ecosystem fluxes is described.

David R Bowling - One of the best experts on this subject based on the ideXlab platform.

  • limitations to winter and spring photosynthesis of a rocky mountain Subalpine Forest
    Agricultural and Forest Meteorology, 2018
    Co-Authors: David R Bowling, Sean P Burns, Barry A Logan, Koen Hufkens, Donald M Aubrecht, Andrew D Richardson, William R L Anderegg, Peter D Blanken, David P Eiriksson
    Abstract:

    Abstract Temperate and boreal conifer Forests are dormant for many months during the cold season. Climate change is altering the winter environment, with increased temperature, altered precipitation, and earlier snowmelt in many locations. If significant enough, these changes may alter patterns of dormancy and activity of evergreens. Here we studied the factors limiting photosynthetic activity of a high-elevation Subalpine Forest that has undergone substantial warming in recent decades. We tested the hypothesis that this warming has been significant enough to allow photosynthesis during sunny warm days in winter. Using thermal imagery, we found that foliage in winter was sometimes near the temperature optimum for photosynthesis, but no net carbon gain occurred for most of the cold season. Water transport was limited by blockage of sap transport by frozen boles, but not by frozen soils. Foliar carotenoid content was much higher during winter, driven largely by increases in the pool size of the photoprotective xanthophyll cycle. There was no seasonal change in chlorophyll or lutein content. Net carbon uptake began only as boles thawed, with no difference in timing among tree species, and the spring increase in canopy-level photosynthetic capacity occurred before sap transport was detected. The seasonality of gross primary productivity (GPP) was strongly linked to seasonality of xanthophyll cycle deepoxidation state in all species. Seasonality of GPP was detectable with two metrics of canopy color – the Green Chromatic Coordinate and Green-Red Vegetation Index (a proxy for the newly proposed MODIS-based chlorophyll/carotenoid index or CCI). Both indices were significantly correlated with GPP. Together these results indicate the potential for airborne or near-surface remote sensing of leaf color to serve as a metric of photosynthetic activity in evergreen Forests, and to monitor physiological changes associated with the progression in and out of winter dormancy.

  • ecological processes dominate the 13c land disequilibrium in a rocky mountain Subalpine Forest
    Global Biogeochemical Cycles, 2014
    Co-Authors: David R Bowling, Sean P Burns, J B Miller, Ashley P Ballantyne, Thomas J Conway, Olaf Menzer, Britton B Stephens, Bruce H Vaughn
    Abstract:

    Fossil fuel combustion has increased atmospheric CO2 by ≈ 115 µmol mol−1 since 1750 and decreased its carbon isotope composition (δ13C) by 1.7–2‰ (the 13C Suess effect). Because carbon is stored in the terrestrial biosphere for decades and longer, the δ13C of CO2 released by terrestrial ecosystems is expected to differ from the δ13C of CO2 assimilated by land plants during photosynthesis. This isotopic difference between land-atmosphere respiration (δR) and photosynthetic assimilation (δA) fluxes gives rise to the 13C land disequilibrium (D). Contemporary understanding suggests that over annual and longer time scales, D is determined primarily by the Suess effect, and thus, D is generally positive (δR > δA). A 7 year record of biosphere-atmosphere carbon exchange was used to evaluate the seasonality of δA and δR, and the 13C land disequilibrium, in a Subalpine conifer Forest. A novel isotopic mixing model was employed to determine the δ13C of net land-atmosphere exchange during day and night and combined with tower-based flux observations to assess δA and δR. The disequilibrium varied seasonally and when flux-weighted was opposite in sign than expected from the Suess effect (D = −0.75 ± 0.21‰ or −0.88 ± 0.10‰ depending on method). Seasonality in D appeared to be driven by photosynthetic discrimination (Δcanopy) responding to environmental factors. Possible explanations for negative D include (1) changes in Δcanopy over decades as CO2 and temperature have risen, and/or (2) post-photosynthetic fractionation processes leading to sequestration of isotopically enriched carbon in long-lived pools like wood and soil.

  • persistent wind induced enhancement of diffusive co2 transport in a mountain Forest snowpack
    Journal of Geophysical Research, 2011
    Co-Authors: David R Bowling, William J Massman
    Abstract:

    mountain Forest seasonal snowpack. Observations of 12 CO2 and 13 CO2 within the snowpack, soil, and air of a Subalpine Forest were made over three winters in the Rocky Mountains, USA. These molecules differ in their rates of diffusion, providing a means to quantify the relative importance of diffusion and advection. An empirical model was developed to describe the transport of these gases through the snowpack, assuming that isotopic variability was caused solely by wind. We found that advection was a persistent phenomenon within the snowpack. Under calm conditions, isotopic patterns followed those associated with diffusion. In the presence of wind, the 4.4‰ isotopic effect of diffusion was diminished, and transport was enhanced beyond the diffusive rate for a given mole fraction gradient. Pressure pumping in our Forest snowpack enhanced transport of CO2 beyond molecular diffusion by up to 40% in the short term (hours) but by at most 8%–11% when integrated over a winter. These results should be applicable to trace gas transport in a variety of biogeochemical applications.

  • biological and physical influences on the carbon isotope content of co2 in a Subalpine Forest snowpack niwot ridge colorado
    Biogeochemistry, 2009
    Co-Authors: David R Bowling, Sean P Burns, Russell K. Monson, William J Massman, Sean M Schaeffer, Mark W. Williams
    Abstract:

    Considerable research has recently been devoted to understanding biogeochemical processes under winter snow cover, leading to enhanced appreciation of the importance of many winter ecological processes. In this study, a comprehensive investigation of the stable carbon isotope composition (d 13 C) of CO2 within a high-elevation Subalpine Forest snowpack was conducted. Our goals were to study the d 13 C of biological soil respiration under snow in winter, and to assess the relative importance of diffusion and advection (ventilation by wind) for gas transport within snow. In agreement with other studies, we found evidence of an active microbial community under a roughly 1-m deep snowpack during winter and into spring as it melted. Under- snow CO2 mole fractions were observed up to 3,500 lmol mol -1 , and d 13 Co f CO 2 varied from *-22 to *-8%. The d 13 C of soil respiration calculated from mixing relationships was -26 to -24%, and although it varied in time, it was generally close to that of the bulk organic horizon (-26.0%). Subnivean CO2 and d 13 C were quite dynamic in response to changes in soil temperature, liquid water availability, and wind events. No clear biologically-induced isotopic changes were observed during periods when microbial activity and root/ rhizosphere activity were expected to vary, although such changes cannot be eliminated. There was clear evidence of isotopic enrichment associated with diffusive transport as predicted by theory, but simple

  • soil plant and transport influences on methane in a Subalpine Forest under high ultraviolet irradiance
    Biogeosciences, 2009
    Co-Authors: David R Bowling, Sean P Burns, Russell K. Monson, J B Miller, M E Rhodes, D Baer
    Abstract:

    Abstract. Recent studies have demonstrated direct methane emission from plant foliage under aerobic conditions, particularly under high ultraviolet (UV) irradiance. We examined the potential importance of this phenomenon in a high-elevation conifer Forest using micrometeorological techniques. Vertical profiles of methane and carbon dioxide in Forest air were monitored every 2 h for 6 weeks in summer 2007. Day to day variability in above-canopy CH4 was high, with observed values in the range 1790 to 1910 nmol mol−1. High CH4 was correlated with high carbon monoxide and related to wind direction, consistent with pollutant transport from an urban area by a well-studied mountain-plain wind system. Soils were moderately dry during the study. Vertical gradients of CH4 were small but detectable day and night, both near the ground and within the vegetation canopy. Gradients near the ground were consistent with the Forest soil being a net CH4 sink. Using scalar similarity with CO2, the magnitude of the summer soil CH4 sink was estimated at ~1.7 mg CH4 m−2 h−1, which is similar to other temperate Forest upland soils. The high-elevation Forest was naturally exposed to high UV irradiance under clear sky conditions, with observed peak UVB irradiance >2 W m−2. Gradients and means of CO2 within the canopy under daytime conditions showed net uptake of CO2 due to photosynthetic drawdown as expected. No evidence was found for a significant foliar CH4 source in the vegetation canopy, even under high UV conditions. While the possibility of a weak foliar source cannot be excluded given the observed soil sink, overall this Subalpine Forest was a net sink for atmospheric methane during the growing season.

Andrew A Turnipseed - One of the best experts on this subject based on the ideXlab platform.

  • controls over ozone deposition to a high elevation Subalpine Forest
    Agricultural and Forest Meteorology, 2009
    Co-Authors: Andrew A Turnipseed, Sean P Burns, Russell K. Monson, D J Moore, Alex Guenther
    Abstract:

    Ecosystem level ozone (O3) fluxes during four different years were examined at a Subalpine Forest site in the Colorado Rocky Mountains. The local mountain–valley wind system and the proximity of the Denver Metropolitan area leads to high summertime ozone episodes on many afternoons. The timing between these episodes and the ecosystem processes controlling photosynthesis during the growing season plays a critical role in determining the amount of ozone deposition. Light and vapor pressure deficit (VPD) were the most dominant environmental drivers controlling the deposition of O3 at this site through their influence on stomatal conductance. 81% of the daytime O3 uptake was predicted to occur through the stomata. Stomatal uptake decreased at high VPD and temperatures leading to an overall decrease in O3 flux; however, we did observe a non-stomatal conductance for O3 that increased slightly with temperature before leveling off at higher values. During the growing season, O3 deposition fluxes were enhanced after midday precipitation events and continued at elevated levels throughout the following night, implying a role for surface wetness. From nighttime data, evidence for both the presence of water films on the needles and non-closure of the plant stomata were observed. During the winter (nongrowing) season, the ozone deposition velocity showed a consistent dependency on the latent heat flux. Although the mechanism is unclear, it is apparent that precipitation events play a role here through their influence on latent heat flux.

  • the contribution of advective fluxes to net ecosystem exchange in a high elevation Subalpine Forest
    Ecological Applications, 2008
    Co-Authors: Dean E Anderson, Sean P Burns, Russell K. Monson, Andrew A Turnipseed, Jed P Sparks, David I Stannard
    Abstract:

    The eddy covariance technique, which is used in the determination of net ecosystem CO2 exchange (NEE), is subject to significant errors when advection that carries CO2 in the mean flow is ignored. We measured horizontal and vertical advective CO2 fluxes at the Niwot Ridge AmeriFlux site (Colorado, USA) using a measurement approach consisting of multiple towers. We observed relatively high rates of both horizontal (F(hadv)) and vertical (F(vadv)) advective fluxes at low surface friction velocities (u(*)) which were associated with downslope katabatic flows. We observed that F(hadv) was confined to a relatively thin layer (0-6 m thick) of subcanopy air that flowed beneath the eddy covariance sensors principally at night, carrying with it respired CO2 from the soil and lower parts of the canopy. The observed F(vadv) came from above the canopy and was presumably due to the convergence of drainage flows at the tower site. The magnitudes of both F(hadv) and F(vadv) were similar, of opposite sign, and increased with decreasing u(*), meaning that they most affected estimates of the total CO2 flux on calm nights with low wind speeds. The mathematical sign, temporal variation and dependence on u(*) of both F(hadv) and F(vadv) were determined by the unique terrain of the Niwot Ridge site. Therefore, the patterns we observed may not be broadly applicable to other sites. We evaluated the influence of advection on the cumulative annual and monthly estimates of the total CO2 flux (F(c)), which is often used as an estimate of NEE, over six years using the dependence of F(hadv) and F(vadv) on u(*). When the sum of F(hadv) and F(vadv) was used to correct monthly F(c), we observed values that were different from the monthly F(c) calculated using the traditional u(*)-filter correction by--16 to 20 g C x m(-2) x mo(-1); the mean percentage difference in monthly Fc for these two methods over the six-year period was 10%. When the sum of F(hadv) and F(vadv) was used to correct annual Fc, we observed a 65% difference compared to the traditional u(*)-filter approach. Thus, the errors to the local CO2 budget, when F(hadv) and F(vadv) are ignored, can become large when compounded in cumulative fashion over long time intervals. We conclude that the "micrometeorological" (using observations of F(hadv) and F(vadv)) and "biological" (using the u(*) filter and temperature vs. F(c) relationship) corrections differ on the basis of fundamental mechanistic grounds. The micrometeorological correction is based on aerodynamic mechanisms and shows no correlation to drivers of biological activity. Conversely, the biological correction is based on climatic responses of organisms and has no physical connection to aerodynamic processes. In those cases where they impose corrections of similar magnitude on the cumulative F(c) sum, the result is due to a serendipitous similarity in scale but has no clear mechanistic explanation.

  • modeling and measuring the nocturnal drainage flow in a high elevation Subalpine Forest with complex terrain
    Journal of Geophysical Research, 2005
    Co-Authors: Russell K. Monson, Andrew A Turnipseed, Zhiqiang Zhai, Dean E Anderson, Brian Lamb, Gene Allwine, Sean P Burns
    Abstract:

    [1] The nocturnal drainage flow of air causes significant uncertainty in ecosystem CO2, H2O, and energy budgets determined with the eddy covariance measurement approach. In this study, we examined the magnitude, nature, and dynamics of the nocturnal drainage flow in a Subalpine Forest ecosystem with complex terrain. We used an experimental approach involving four towers, each with vertical profiling of wind speed to measure the magnitude of drainage flows and dynamics in their occurrence. We developed an analytical drainage flow model, constrained with measurements of canopy structure and SF6 diffusion, to help us interpret the tower profile results. Model predictions were in good agreement with observed profiles of wind speed, leaf area density, and wind drag coefficient. Using theory, we showed that this one-dimensional model is reduced to the widely used exponential wind profile model under conditions where vertical leaf area density and drag coefficient are uniformly distributed. We used the model for stability analysis, which predicted the presence of a very stable layer near the height of maximum leaf area density. This stable layer acts as a flow impediment, minimizing vertical dispersion between the subcanopy air space and the atmosphere above the canopy. The prediction is consistent with the results of SF6 diffusion observations that showed minimal vertical dispersion of nighttime, subcanopy drainage flows. The stable within-canopy air layer coincided with the height of maximum wake-to-shear production ratio. We concluded that nighttime drainage flows are restricted to a relatively shallow layer of air beneath the canopy, with little vertical mixing across a relatively long horizontal fetch. Insight into the horizontal and vertical structure of the drainage flow is crucial for understanding the magnitude and dynamics of the mean advective CO2 flux that becomes significant during stable nighttime conditions and are typically missed during measurement of the turbulent CO2 flux. The model and interpretation provided in this study should lead to research strategies for the measurement of these advective fluxes and their inclusion in the overall mass balance for CO2 at this site with complex terrain.

  • climatic influences on net ecosystem co2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high elevation Subalpine Forest
    Oecologia, 2005
    Co-Authors: Russell K. Monson, Laura E Scottdenton, Jed P Sparks, Todd N Rosenstiel, Travis E Huxman, P Harley, Andrew A Turnipseed
    Abstract:

    The transition between wintertime net carbon loss and springtime net carbon assimilation has an important role in controlling the annual rate of carbon uptake in coniferous Forest ecosystems. We studied the contributions of springtime carbon assimilation to the total annual rate of carbon uptake and the processes involved in the winter-to-spring transition across a range of scales from ecosystem CO2 fluxes to chloroplast photochemistry in a coniferous, Subalpine Forest. We observed numerous initiations and reversals in the recovery of photosynthetic CO2 uptake during the initial phase of springtime recovery in response to the passage of alternating warm- and cold-weather systems. Full recovery of ecosystem carbon uptake, whereby the 24-h cumulative sum of NEE (NEEdaily) was consistently negative, did not occur until 3–4 weeks after the first signs of photosynthetic recovery. A key event that preceded full recovery was the occurrence of isothermality in the vertical profile of snow temperature across the snow pack; thus, providing consistent daytime percolation of melted snow water through the snow pack. Interannual variation in the cumulative annual NEE (NEEannual) was mostly explained by variation in NEE during the snow-melt period (NEEsnow-melt), not variation in NEE during the snow-free part of the growing season (NEEsnow-free). NEEsnow-melt was highest in those years when the snow melt occurred later in the spring, leading us to conclude that in this ecosystem, years with earlier springs are characterized by lower rates of NEEannual, a conclusion that contrasts with those from past studies in deciduous Forest ecosystems. Using studies on isolated branches we showed that the recovery of photosynthesis occurred through a series of coordinated physiological and biochemical events. Increasing air temperatures initiated recovery through the upregulation of PSII electron transport caused in part by disengagement of thermal energy dissipation by the carotenoid, zeaxanthin. The availability of liquid water permitted a slightly slower recovery phase involving increased stomatal conductance. The most rate-limiting step in the recovery process was an increase in the capacity for the needles to use intercellular CO2, presumably due to slow recovery of Rubisco activity. Interspecific differences were observed in the timing of photosynthetic recovery for the dominant tree species. The results of our study provide (1) a context for springtime CO2 uptake within the broader perspective of the annual carbon budget in this Subalpine Forest, and (2) a mechanistic explanation across a range of scales for the coupling between springtime climate and the carbon cycle of high-elevation coniferous Forest ecosystems.

  • temperature as a control over ecosystem co2 fluxes in a high elevation Subalpine Forest
    Oecologia, 2003
    Co-Authors: Jed P Sparks, Andrew A Turnipseed, Travis E Huxman, P C Harley, Russell K. Monson
    Abstract:

    We evaluated the hypothesis that CO2 uptake by a Subalpine, coniferous Forest is limited by cool temperature during the growing season. Using the eddy covariance approach we conducted observations of net ecosystem CO2 exchange (NEE) across two growing seasons. When pooled for the entire growing season during both years, light-saturated net ecosystem CO2 exchange (NEEsat) exhibited a temperature optimum within the range 7-12�C. Ecosystem respiration rate (Re), calculated as the y-intercept of the NEE versus photosynthetic photon flux density (PPFD) relationship, increased with increasing temperature, causing a 15% reduction in net CO2 uptake capacity for this ecosystem as temperatures increased from typical early season temper- atures of 7�C to typical mid-season temperatures of 18�C. The ecosystem quantum yield and the ecosystem PPFD compensation point, which are measures of light-utiliza- tion efficiency, were highest during the cool temperatures of the early season, and decreased later in the season at higher temperatures. Branch-level measurements revealed that net photosynthesis in all three of the dominant conifer tree species exhibited a temperature optimum near 10�C early in the season and 15�C later in the season. Using path analysis, we statistically isolated temperature as a seasonal variable, and identified the dynamic role that temperature exhibits in controlling ecosystem fluxes early and late in the season. During the spring, an increase in temperature has a positive effect on NEE, because daytime temperatures progress from near freezing to near the photosynthetic temperature optimum, and Re values remain low. During the middle of the summer an increase in temperature has a negative effect on NEE, because inhibition of net photosynthesis and increases in Re. When taken together, the results demonstrate that in this high- elevation Forest ecosystem CO2 uptake is not limited by cool-temperature constraints on photosynthetic processes during the growing-season, as suggested by some previ- ous ecophysiological studies at the branch and needle levels. Rather, it is warm temperatures in the mid- summer, and their effect on ecosystem respiration, that cause the greatest reduction in the potential for Forest carbon sequestration.

Laura E Scottdenton - One of the best experts on this subject based on the ideXlab platform.

  • forecasting net ecosystem co2 exchange in a Subalpine Forest using model data assimilation combined with simulated climate and weather generation
    Journal of Geophysical Research, 2013
    Co-Authors: Laura E Scottdenton, Sean P Burns, Russell K. Monson, David S Schimel, David J P Moore, N A Rosenbloom, T G F Kittel
    Abstract:

    [1] Forecasting the carbon uptake potential of terrestrial ecosystems in the face of future climate change has proven challenging. Process models, which have been increasingly used to study ecosystem-atmosphere carbon and water exchanges when conditioned with tower-based eddy covariance data, have the potential to inform us about biogeochemical processes in future climate regimes, but only if we can reconcile the spatial and temporal scales used for observed fluxes and projected climate. Here, we used weather generator and ecosystem process models conditioned on observed weather dynamics and carbon/water fluxes, and embedded them within climate projections from a suite of six Earth Systems Models. Using this combination of models, we studied carbon cycle processes in a Subalpine Forest within the context of future (2080–2099) climate regimes. The assimilation of daily averaged, observed net ecosystem CO2 exchange (NEE) and evapotranspiration (ET) into the ecosystem process model resulted in retrieval of projected NEE with a level of accuracy that was similar to that following the assimilation of half-daily averaged observations; the assimilation of 30 min averaged fluxes or monthly averaged fluxes caused degradation in the model's capacity to accurately simulate seasonal patterns in observed NEE. Using daily averaged flux data with daily averaged weather data projected for the period 2080–2099, we predicted greater Forest net CO2 uptake in response to a lengthening of the growing season. These results contradict our previous observations of reduced CO2 uptake in response to longer growing seasons in the current (1999–2008) climate regime. The difference between these analyses is due to a projected increase in the frequency of rain versus snow during warmer winters of the future. Our results demonstrate the sensitivity of modeled processes to local variation in meteorology, which is often left unresolved in traditional approaches to earth systems modeling, and the importance of maintaining similarity in the timescales used in ecosystem process models driven by downscaled climate projections.

  • tree species effects on ecosystem water use efficiency in a high elevation Subalpine Forest
    Oecologia, 2010
    Co-Authors: Russell K. Monson, Sean P Burns, Kimberlee L Sparks, Jed P Sparks, Margaret R Prater, Laura E Scottdenton
    Abstract:

    Ecosystem water-use efficiency (eWUE; the ratio of net ecosystem productivity to evapotranspiration rate) is a complex landscape-scale parameter controlled by both physical and biological processes occurring in soil and plants. Leaf WUE (lWUE; the ratio of leaf CO2 assimilation rate to transpiration rate) is controlled at short time scales principally by leaf stomatal dynamics and this control varies among plant species. Little is known about how leaf-scale variation in lWUE influences landscape-scale variation in eWUE. We analyzed approximately seven thousand 30-min averaged eddy covariance observations distributed across 9 years in order to assess eWUE in two neighboring Forest communities. Mean eWUE was 19% lower for the community in which Engelmann spruce and Subalpine fir were dominant, compared to the community in which lodgepole pine was dominant. Of that 19% difference, 8% was attributed to residual bias in the analysis that favored periods with slightly drier winds for the spruce-fir community. In an effort to explain the remaining 11% difference, we assessed patterns in lWUE using C isotope ratios. When we focused on bulk tissue from older needles we detected significant differences in lWUE among tree species and between upper and lower canopy needles. However, when these differences were scaled to reflect vertical and horizontal leaf area distributions within the two communities, they provided no power to explain differences in eWUE that we observed in the eddy covariance data. When we focused only on bulk needle tissue of current-year needles for 3 of the 9 years, we also observed differences in lWUE among species and in needles from upper and lower parts of the canopy. When these differences in lWUE were scaled to reflect leaf area distributions within the two communities, we were able to explain 6.3% of the differences in eWUE in 1 year (2006), but there was no power to explain differences in the other 2 years (2003 and 2007). When we examined sugars extracted from needles at 3 different times during the growing season of 2007, we could explain 3.8–6.0% of the differences in eWUE between the two communities, but the difference in eWUE obtained from the eddy covariance record, and averaged over the growing season for this single year, was 32%. Thus, overall, after accounting for species effects on lWUE, we could explain little of the difference in eWUE between the two Forest communities observed in the eddy covariance record. It is likely that water and C fluxes from soil, understory plants, and non-needle tissues, account for most of the differences observed in the eddy covariance data. For those cases where we could explain some of the difference in eWUE on the basis of species effects, we partitioned the scaled patterns in lWUE into two components: a component that is independent of canopy leaf area distribution, and therefore only dependent on species-specific differences in needle physiology; and a component that is independent of species differences in needle physiology, and only dependent on species-specific influences on canopy leaf area distribution. Only the component that is dependent on species influences on canopy leaf area distribution, and independent of inherent species differences in needle physiology, had potential to explain differences in eWUE between the two communities. Thus, when tree species effects are important, canopy structure, rather than species-specific needle physiology, has more potential to explain patterns in eWUE.

  • the effects of tree rhizodeposition on soil exoenzyme activity dissolved organic carbon and nutrient availability in a Subalpine Forest ecosystem
    Oecologia, 2007
    Co-Authors: Michael N Weintraub, Laura E Scottdenton, Steven K Schmidt, Russell K. Monson
    Abstract:

    Previous studies have found that root carbon inputs to the soil can stimulate the mineralization of existing soil carbon (C) pools. It is still uncertain, however, whether this “primed” C is derived from elevated rates of soil organic matter (SOM) decomposition, greater C release from microbial pools, or both. The goal of this research was to determine how the activities of the microbial exoenzymes that control SOM decomposition are affected by root C inputs. This was done by manipulating rhizodeposition with tree girdling in a coniferous Subalpine Forest in the Rocky Mountains of Colorado, USA, and following changes in the activities of nine exoenzymes involved in decomposition, as well as soil dissolved organic C, dissolved organic and inorganic nitrogen (N), and microbial biomass C and N. We found that rhizodeposition is high in the spring, when the soils are still snow-covered, and that there are large ephemeral populations of microorganisms dependent upon this C. Microbial N acquisition from peptide degradation increased with increases in microbial biomass when rhizodeposition was highest. However, our data indicate that the breakdown of cellulose, lignin, chitin, and organic phosphorus are not affected by springtime increases in soil microbial biomass associated with increases in rhizodeposition. We conclude that the priming of soil C mineralization by rhizodeposition is due to growth of the microbial biomass and an increase in the breakdown of N-rich proteins, but not due to increases in the degradation of plant litter constituents such as cellulose and lignin.

  • climatic influences on net ecosystem co2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high elevation Subalpine Forest
    Oecologia, 2005
    Co-Authors: Russell K. Monson, Laura E Scottdenton, Jed P Sparks, Todd N Rosenstiel, Travis E Huxman, P Harley, Andrew A Turnipseed
    Abstract:

    The transition between wintertime net carbon loss and springtime net carbon assimilation has an important role in controlling the annual rate of carbon uptake in coniferous Forest ecosystems. We studied the contributions of springtime carbon assimilation to the total annual rate of carbon uptake and the processes involved in the winter-to-spring transition across a range of scales from ecosystem CO2 fluxes to chloroplast photochemistry in a coniferous, Subalpine Forest. We observed numerous initiations and reversals in the recovery of photosynthetic CO2 uptake during the initial phase of springtime recovery in response to the passage of alternating warm- and cold-weather systems. Full recovery of ecosystem carbon uptake, whereby the 24-h cumulative sum of NEE (NEEdaily) was consistently negative, did not occur until 3–4 weeks after the first signs of photosynthetic recovery. A key event that preceded full recovery was the occurrence of isothermality in the vertical profile of snow temperature across the snow pack; thus, providing consistent daytime percolation of melted snow water through the snow pack. Interannual variation in the cumulative annual NEE (NEEannual) was mostly explained by variation in NEE during the snow-melt period (NEEsnow-melt), not variation in NEE during the snow-free part of the growing season (NEEsnow-free). NEEsnow-melt was highest in those years when the snow melt occurred later in the spring, leading us to conclude that in this ecosystem, years with earlier springs are characterized by lower rates of NEEannual, a conclusion that contrasts with those from past studies in deciduous Forest ecosystems. Using studies on isolated branches we showed that the recovery of photosynthesis occurred through a series of coordinated physiological and biochemical events. Increasing air temperatures initiated recovery through the upregulation of PSII electron transport caused in part by disengagement of thermal energy dissipation by the carotenoid, zeaxanthin. The availability of liquid water permitted a slightly slower recovery phase involving increased stomatal conductance. The most rate-limiting step in the recovery process was an increase in the capacity for the needles to use intercellular CO2, presumably due to slow recovery of Rubisco activity. Interspecific differences were observed in the timing of photosynthetic recovery for the dominant tree species. The results of our study provide (1) a context for springtime CO2 uptake within the broader perspective of the annual carbon budget in this Subalpine Forest, and (2) a mechanistic explanation across a range of scales for the coupling between springtime climate and the carbon cycle of high-elevation coniferous Forest ecosystems.

  • spatial and temporal controls of soil respiration rate in a high elevation Subalpine Forest
    Soil Biology & Biochemistry, 2003
    Co-Authors: Laura E Scottdenton, Kimberlee L Sparks, Russell K. Monson
    Abstract:

    Abstract We examined soil respiration to determine what measurable environmental variables can be used to predict variation in soil respiration rates, spatially and temporally, at a high-elevation, mixed conifer, Subalpine Forest site at the Niwot Ridge Ameriflux Site in Colorado. For three summers, soil respiration rates were measured using soil collars and a portable gas-exchange system. Transects of the collars were established to ensure spatial characterization of the litter-repleted areas beneath tree crowns and the litter-depleted open spaces between tree crowns. Soil temperature and soil moisture were both identified as important drivers of soil respiration rate, but were found to confound each other and to function as primary controls at different scales. Soil temperature represents a primary control seasonally, and soil moisture represents a primary control interannually. Spatially, organic layer thickness, ammonium concentration, water content, and the microbial and soil soluble carbon pools were found to predict variation from point to point. Soil microbial biomass strongly correlated to soil respiration rate, whereas root biomass was identified as a weak predictor of respiration rate and only when controlling for other variables. Spatial variation in soil respiration rate is highly determined by the depth of the soil organic horizon, which in this ecosystem varies predictably according to distance from trees. The conclusions that can be drawn from the study provide the foundation for the development of future models of soil respiration driven by fundamental variables of the climate and soil microenvironment.