Subcutaneous Hemorrhage

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 1575 Experts worldwide ranked by ideXlab platform

Yoko Aoki - One of the best experts on this subject based on the ideXlab platform.

  • new noonan syndrome model mice with rit1 mutation exhibit cardiac hypertrophy and susceptibility to β adrenergic stimulation induced cardiac fibrosis
    EBioMedicine, 2019
    Co-Authors: Shingo Takahara, Tetsuya Niihori, Shinichi Inoue, Sachiko Miyagawatomita, Katsuhisa Matsuura, Yasumi Nakashima, Yoichi Matsubara, Yoshikatsu Saiki, Yoko Aoki
    Abstract:

    Abstract Background Noonan syndrome (NS) is a genetic disorder characterized by short stature, a distinctive facial appearance, and heart defects. We recently discovered a novel NS gene, RIT1, which is a member of the RAS subfamily of small GTPases. NS patients with RIT1 mutations have a high incidence of hypertrophic cardiomyopathy and edematous phenotype, but the specific role of RIT1 remains unclear. Methods To investigate how germline RIT1 mutations cause NS, we generated knock-in mice that carried a NS-associated Rit1 A57G mutation (Rit1A57G/+). We investigated the phenotypes of Rit1A57G/+ mice in fetal and adult stages as well as the effects of isoproterenol on cardiac function in Rit1A57G/+ mice. Findings Rit1A57G/+ embryos exhibited decreased viability, edema, Subcutaneous Hemorrhage and AKT activation. Surviving Rit1A57G/+ mice had a short stature, craniofacial abnormalities and splenomegaly. Cardiac hypertrophy and cardiac fibrosis with increased expression of S100A4, vimentin and periostin were observed in Rit1A57G/+ mice compared to Rit1+/+ mice. Upon isoproterenol stimulation, cardiac fibrosis was drastically increased in Rit1A57G/+ mice. Phosphorylated (at Thr308) AKT levels were also elevated in isoproterenol-treated Rit1A57G/+ hearts. Interpretation The A57G mutation in Rit1 causes cardiac hypertrophy, fibrosis and other NS-associated features. Biochemical analysis indicates that the AKT signaling pathway might be related to downstream signaling in the RIT1 A57G mutant at a developmental stage and under β-adrenergic stimulation in the heart. Fund The Grants-in-Aid were provided by the Practical Research Project for Rare/Intractable Diseases from the Japan Agency for Medical Research and Development, the Japan Society for the Promotion of Science KAKENHI Grant.

  • New Noonan syndrome model mice with RIT1 mutation exhibit cardiac hypertrophy and susceptibility to β-adrenergic stimulation-induced cardiac fibrosisResearch in context
    'Elsevier BV', 2019
    Co-Authors: Shingo Takahara, Tetsuya Niihori, Shinichi Inoue, Katsuhisa Matsuura, Yasumi Nakashima, Yoichi Matsubara, Yoshikatsu Saiki, Sachiko Miyagawa-tomita, Yoko Aoki
    Abstract:

    Background: Noonan syndrome (NS) is a genetic disorder characterized by short stature, a distinctive facial appearance, and heart defects. We recently discovered a novel NS gene, RIT1, which is a member of the RAS subfamily of small GTPases. NS patients with RIT1 mutations have a high incidence of hypertrophic cardiomyopathy and edematous phenotype, but the specific role of RIT1 remains unclear. Methods: To investigate how germline RIT1 mutations cause NS, we generated knock-in mice that carried a NS-associated Rit1 A57G mutation (Rit1A57G/+). We investigated the phenotypes of Rit1A57G/+ mice in fetal and adult stages as well as the effects of isoproterenol on cardiac function in Rit1A57G/+ mice. Findings: Rit1A57G/+ embryos exhibited decreased viability, edema, Subcutaneous Hemorrhage and AKT activation. Surviving Rit1A57G/+ mice had a short stature, craniofacial abnormalities and splenomegaly. Cardiac hypertrophy and cardiac fibrosis with increased expression of S100A4, vimentin and periostin were observed in Rit1A57G/+ mice compared to Rit1+/+ mice. Upon isoproterenol stimulation, cardiac fibrosis was drastically increased in Rit1A57G/+ mice. Phosphorylated (at Thr308) AKT levels were also elevated in isoproterenol-treated Rit1A57G/+ hearts. Interpretation: The A57G mutation in Rit1 causes cardiac hypertrophy, fibrosis and other NS-associated features. Biochemical analysis indicates that the AKT signaling pathway might be related to downstream signaling in the RIT1 A57G mutant at a developmental stage and under β-adrenergic stimulation in the heart. Fund: The Grants-in-Aid were provided by the Practical Research Project for Rare/Intractable Diseases from the Japan Agency for Medical Research and Development, the Japan Society for the Promotion of Science KAKENHI Grant. Keywords: Noonan syndrome, RIT1, Cardiac hypertrophy, Cardiac fibrosis, AK

Shingo Takahara - One of the best experts on this subject based on the ideXlab platform.

  • new noonan syndrome model mice with rit1 mutation exhibit cardiac hypertrophy and susceptibility to β adrenergic stimulation induced cardiac fibrosis
    EBioMedicine, 2019
    Co-Authors: Shingo Takahara, Tetsuya Niihori, Shinichi Inoue, Sachiko Miyagawatomita, Katsuhisa Matsuura, Yasumi Nakashima, Yoichi Matsubara, Yoshikatsu Saiki, Yoko Aoki
    Abstract:

    Abstract Background Noonan syndrome (NS) is a genetic disorder characterized by short stature, a distinctive facial appearance, and heart defects. We recently discovered a novel NS gene, RIT1, which is a member of the RAS subfamily of small GTPases. NS patients with RIT1 mutations have a high incidence of hypertrophic cardiomyopathy and edematous phenotype, but the specific role of RIT1 remains unclear. Methods To investigate how germline RIT1 mutations cause NS, we generated knock-in mice that carried a NS-associated Rit1 A57G mutation (Rit1A57G/+). We investigated the phenotypes of Rit1A57G/+ mice in fetal and adult stages as well as the effects of isoproterenol on cardiac function in Rit1A57G/+ mice. Findings Rit1A57G/+ embryos exhibited decreased viability, edema, Subcutaneous Hemorrhage and AKT activation. Surviving Rit1A57G/+ mice had a short stature, craniofacial abnormalities and splenomegaly. Cardiac hypertrophy and cardiac fibrosis with increased expression of S100A4, vimentin and periostin were observed in Rit1A57G/+ mice compared to Rit1+/+ mice. Upon isoproterenol stimulation, cardiac fibrosis was drastically increased in Rit1A57G/+ mice. Phosphorylated (at Thr308) AKT levels were also elevated in isoproterenol-treated Rit1A57G/+ hearts. Interpretation The A57G mutation in Rit1 causes cardiac hypertrophy, fibrosis and other NS-associated features. Biochemical analysis indicates that the AKT signaling pathway might be related to downstream signaling in the RIT1 A57G mutant at a developmental stage and under β-adrenergic stimulation in the heart. Fund The Grants-in-Aid were provided by the Practical Research Project for Rare/Intractable Diseases from the Japan Agency for Medical Research and Development, the Japan Society for the Promotion of Science KAKENHI Grant.

  • New Noonan syndrome model mice with RIT1 mutation exhibit cardiac hypertrophy and susceptibility to β-adrenergic stimulation-induced cardiac fibrosisResearch in context
    'Elsevier BV', 2019
    Co-Authors: Shingo Takahara, Tetsuya Niihori, Shinichi Inoue, Katsuhisa Matsuura, Yasumi Nakashima, Yoichi Matsubara, Yoshikatsu Saiki, Sachiko Miyagawa-tomita, Yoko Aoki
    Abstract:

    Background: Noonan syndrome (NS) is a genetic disorder characterized by short stature, a distinctive facial appearance, and heart defects. We recently discovered a novel NS gene, RIT1, which is a member of the RAS subfamily of small GTPases. NS patients with RIT1 mutations have a high incidence of hypertrophic cardiomyopathy and edematous phenotype, but the specific role of RIT1 remains unclear. Methods: To investigate how germline RIT1 mutations cause NS, we generated knock-in mice that carried a NS-associated Rit1 A57G mutation (Rit1A57G/+). We investigated the phenotypes of Rit1A57G/+ mice in fetal and adult stages as well as the effects of isoproterenol on cardiac function in Rit1A57G/+ mice. Findings: Rit1A57G/+ embryos exhibited decreased viability, edema, Subcutaneous Hemorrhage and AKT activation. Surviving Rit1A57G/+ mice had a short stature, craniofacial abnormalities and splenomegaly. Cardiac hypertrophy and cardiac fibrosis with increased expression of S100A4, vimentin and periostin were observed in Rit1A57G/+ mice compared to Rit1+/+ mice. Upon isoproterenol stimulation, cardiac fibrosis was drastically increased in Rit1A57G/+ mice. Phosphorylated (at Thr308) AKT levels were also elevated in isoproterenol-treated Rit1A57G/+ hearts. Interpretation: The A57G mutation in Rit1 causes cardiac hypertrophy, fibrosis and other NS-associated features. Biochemical analysis indicates that the AKT signaling pathway might be related to downstream signaling in the RIT1 A57G mutant at a developmental stage and under β-adrenergic stimulation in the heart. Fund: The Grants-in-Aid were provided by the Practical Research Project for Rare/Intractable Diseases from the Japan Agency for Medical Research and Development, the Japan Society for the Promotion of Science KAKENHI Grant. Keywords: Noonan syndrome, RIT1, Cardiac hypertrophy, Cardiac fibrosis, AK

Yoichi Matsubara - One of the best experts on this subject based on the ideXlab platform.

  • new noonan syndrome model mice with rit1 mutation exhibit cardiac hypertrophy and susceptibility to β adrenergic stimulation induced cardiac fibrosis
    EBioMedicine, 2019
    Co-Authors: Shingo Takahara, Tetsuya Niihori, Shinichi Inoue, Sachiko Miyagawatomita, Katsuhisa Matsuura, Yasumi Nakashima, Yoichi Matsubara, Yoshikatsu Saiki, Yoko Aoki
    Abstract:

    Abstract Background Noonan syndrome (NS) is a genetic disorder characterized by short stature, a distinctive facial appearance, and heart defects. We recently discovered a novel NS gene, RIT1, which is a member of the RAS subfamily of small GTPases. NS patients with RIT1 mutations have a high incidence of hypertrophic cardiomyopathy and edematous phenotype, but the specific role of RIT1 remains unclear. Methods To investigate how germline RIT1 mutations cause NS, we generated knock-in mice that carried a NS-associated Rit1 A57G mutation (Rit1A57G/+). We investigated the phenotypes of Rit1A57G/+ mice in fetal and adult stages as well as the effects of isoproterenol on cardiac function in Rit1A57G/+ mice. Findings Rit1A57G/+ embryos exhibited decreased viability, edema, Subcutaneous Hemorrhage and AKT activation. Surviving Rit1A57G/+ mice had a short stature, craniofacial abnormalities and splenomegaly. Cardiac hypertrophy and cardiac fibrosis with increased expression of S100A4, vimentin and periostin were observed in Rit1A57G/+ mice compared to Rit1+/+ mice. Upon isoproterenol stimulation, cardiac fibrosis was drastically increased in Rit1A57G/+ mice. Phosphorylated (at Thr308) AKT levels were also elevated in isoproterenol-treated Rit1A57G/+ hearts. Interpretation The A57G mutation in Rit1 causes cardiac hypertrophy, fibrosis and other NS-associated features. Biochemical analysis indicates that the AKT signaling pathway might be related to downstream signaling in the RIT1 A57G mutant at a developmental stage and under β-adrenergic stimulation in the heart. Fund The Grants-in-Aid were provided by the Practical Research Project for Rare/Intractable Diseases from the Japan Agency for Medical Research and Development, the Japan Society for the Promotion of Science KAKENHI Grant.

  • New Noonan syndrome model mice with RIT1 mutation exhibit cardiac hypertrophy and susceptibility to β-adrenergic stimulation-induced cardiac fibrosisResearch in context
    'Elsevier BV', 2019
    Co-Authors: Shingo Takahara, Tetsuya Niihori, Shinichi Inoue, Katsuhisa Matsuura, Yasumi Nakashima, Yoichi Matsubara, Yoshikatsu Saiki, Sachiko Miyagawa-tomita, Yoko Aoki
    Abstract:

    Background: Noonan syndrome (NS) is a genetic disorder characterized by short stature, a distinctive facial appearance, and heart defects. We recently discovered a novel NS gene, RIT1, which is a member of the RAS subfamily of small GTPases. NS patients with RIT1 mutations have a high incidence of hypertrophic cardiomyopathy and edematous phenotype, but the specific role of RIT1 remains unclear. Methods: To investigate how germline RIT1 mutations cause NS, we generated knock-in mice that carried a NS-associated Rit1 A57G mutation (Rit1A57G/+). We investigated the phenotypes of Rit1A57G/+ mice in fetal and adult stages as well as the effects of isoproterenol on cardiac function in Rit1A57G/+ mice. Findings: Rit1A57G/+ embryos exhibited decreased viability, edema, Subcutaneous Hemorrhage and AKT activation. Surviving Rit1A57G/+ mice had a short stature, craniofacial abnormalities and splenomegaly. Cardiac hypertrophy and cardiac fibrosis with increased expression of S100A4, vimentin and periostin were observed in Rit1A57G/+ mice compared to Rit1+/+ mice. Upon isoproterenol stimulation, cardiac fibrosis was drastically increased in Rit1A57G/+ mice. Phosphorylated (at Thr308) AKT levels were also elevated in isoproterenol-treated Rit1A57G/+ hearts. Interpretation: The A57G mutation in Rit1 causes cardiac hypertrophy, fibrosis and other NS-associated features. Biochemical analysis indicates that the AKT signaling pathway might be related to downstream signaling in the RIT1 A57G mutant at a developmental stage and under β-adrenergic stimulation in the heart. Fund: The Grants-in-Aid were provided by the Practical Research Project for Rare/Intractable Diseases from the Japan Agency for Medical Research and Development, the Japan Society for the Promotion of Science KAKENHI Grant. Keywords: Noonan syndrome, RIT1, Cardiac hypertrophy, Cardiac fibrosis, AK

Shinichi Inoue - One of the best experts on this subject based on the ideXlab platform.

  • new noonan syndrome model mice with rit1 mutation exhibit cardiac hypertrophy and susceptibility to β adrenergic stimulation induced cardiac fibrosis
    EBioMedicine, 2019
    Co-Authors: Shingo Takahara, Tetsuya Niihori, Shinichi Inoue, Sachiko Miyagawatomita, Katsuhisa Matsuura, Yasumi Nakashima, Yoichi Matsubara, Yoshikatsu Saiki, Yoko Aoki
    Abstract:

    Abstract Background Noonan syndrome (NS) is a genetic disorder characterized by short stature, a distinctive facial appearance, and heart defects. We recently discovered a novel NS gene, RIT1, which is a member of the RAS subfamily of small GTPases. NS patients with RIT1 mutations have a high incidence of hypertrophic cardiomyopathy and edematous phenotype, but the specific role of RIT1 remains unclear. Methods To investigate how germline RIT1 mutations cause NS, we generated knock-in mice that carried a NS-associated Rit1 A57G mutation (Rit1A57G/+). We investigated the phenotypes of Rit1A57G/+ mice in fetal and adult stages as well as the effects of isoproterenol on cardiac function in Rit1A57G/+ mice. Findings Rit1A57G/+ embryos exhibited decreased viability, edema, Subcutaneous Hemorrhage and AKT activation. Surviving Rit1A57G/+ mice had a short stature, craniofacial abnormalities and splenomegaly. Cardiac hypertrophy and cardiac fibrosis with increased expression of S100A4, vimentin and periostin were observed in Rit1A57G/+ mice compared to Rit1+/+ mice. Upon isoproterenol stimulation, cardiac fibrosis was drastically increased in Rit1A57G/+ mice. Phosphorylated (at Thr308) AKT levels were also elevated in isoproterenol-treated Rit1A57G/+ hearts. Interpretation The A57G mutation in Rit1 causes cardiac hypertrophy, fibrosis and other NS-associated features. Biochemical analysis indicates that the AKT signaling pathway might be related to downstream signaling in the RIT1 A57G mutant at a developmental stage and under β-adrenergic stimulation in the heart. Fund The Grants-in-Aid were provided by the Practical Research Project for Rare/Intractable Diseases from the Japan Agency for Medical Research and Development, the Japan Society for the Promotion of Science KAKENHI Grant.

  • New Noonan syndrome model mice with RIT1 mutation exhibit cardiac hypertrophy and susceptibility to β-adrenergic stimulation-induced cardiac fibrosisResearch in context
    'Elsevier BV', 2019
    Co-Authors: Shingo Takahara, Tetsuya Niihori, Shinichi Inoue, Katsuhisa Matsuura, Yasumi Nakashima, Yoichi Matsubara, Yoshikatsu Saiki, Sachiko Miyagawa-tomita, Yoko Aoki
    Abstract:

    Background: Noonan syndrome (NS) is a genetic disorder characterized by short stature, a distinctive facial appearance, and heart defects. We recently discovered a novel NS gene, RIT1, which is a member of the RAS subfamily of small GTPases. NS patients with RIT1 mutations have a high incidence of hypertrophic cardiomyopathy and edematous phenotype, but the specific role of RIT1 remains unclear. Methods: To investigate how germline RIT1 mutations cause NS, we generated knock-in mice that carried a NS-associated Rit1 A57G mutation (Rit1A57G/+). We investigated the phenotypes of Rit1A57G/+ mice in fetal and adult stages as well as the effects of isoproterenol on cardiac function in Rit1A57G/+ mice. Findings: Rit1A57G/+ embryos exhibited decreased viability, edema, Subcutaneous Hemorrhage and AKT activation. Surviving Rit1A57G/+ mice had a short stature, craniofacial abnormalities and splenomegaly. Cardiac hypertrophy and cardiac fibrosis with increased expression of S100A4, vimentin and periostin were observed in Rit1A57G/+ mice compared to Rit1+/+ mice. Upon isoproterenol stimulation, cardiac fibrosis was drastically increased in Rit1A57G/+ mice. Phosphorylated (at Thr308) AKT levels were also elevated in isoproterenol-treated Rit1A57G/+ hearts. Interpretation: The A57G mutation in Rit1 causes cardiac hypertrophy, fibrosis and other NS-associated features. Biochemical analysis indicates that the AKT signaling pathway might be related to downstream signaling in the RIT1 A57G mutant at a developmental stage and under β-adrenergic stimulation in the heart. Fund: The Grants-in-Aid were provided by the Practical Research Project for Rare/Intractable Diseases from the Japan Agency for Medical Research and Development, the Japan Society for the Promotion of Science KAKENHI Grant. Keywords: Noonan syndrome, RIT1, Cardiac hypertrophy, Cardiac fibrosis, AK

Katsuhisa Matsuura - One of the best experts on this subject based on the ideXlab platform.

  • new noonan syndrome model mice with rit1 mutation exhibit cardiac hypertrophy and susceptibility to β adrenergic stimulation induced cardiac fibrosis
    EBioMedicine, 2019
    Co-Authors: Shingo Takahara, Tetsuya Niihori, Shinichi Inoue, Sachiko Miyagawatomita, Katsuhisa Matsuura, Yasumi Nakashima, Yoichi Matsubara, Yoshikatsu Saiki, Yoko Aoki
    Abstract:

    Abstract Background Noonan syndrome (NS) is a genetic disorder characterized by short stature, a distinctive facial appearance, and heart defects. We recently discovered a novel NS gene, RIT1, which is a member of the RAS subfamily of small GTPases. NS patients with RIT1 mutations have a high incidence of hypertrophic cardiomyopathy and edematous phenotype, but the specific role of RIT1 remains unclear. Methods To investigate how germline RIT1 mutations cause NS, we generated knock-in mice that carried a NS-associated Rit1 A57G mutation (Rit1A57G/+). We investigated the phenotypes of Rit1A57G/+ mice in fetal and adult stages as well as the effects of isoproterenol on cardiac function in Rit1A57G/+ mice. Findings Rit1A57G/+ embryos exhibited decreased viability, edema, Subcutaneous Hemorrhage and AKT activation. Surviving Rit1A57G/+ mice had a short stature, craniofacial abnormalities and splenomegaly. Cardiac hypertrophy and cardiac fibrosis with increased expression of S100A4, vimentin and periostin were observed in Rit1A57G/+ mice compared to Rit1+/+ mice. Upon isoproterenol stimulation, cardiac fibrosis was drastically increased in Rit1A57G/+ mice. Phosphorylated (at Thr308) AKT levels were also elevated in isoproterenol-treated Rit1A57G/+ hearts. Interpretation The A57G mutation in Rit1 causes cardiac hypertrophy, fibrosis and other NS-associated features. Biochemical analysis indicates that the AKT signaling pathway might be related to downstream signaling in the RIT1 A57G mutant at a developmental stage and under β-adrenergic stimulation in the heart. Fund The Grants-in-Aid were provided by the Practical Research Project for Rare/Intractable Diseases from the Japan Agency for Medical Research and Development, the Japan Society for the Promotion of Science KAKENHI Grant.

  • New Noonan syndrome model mice with RIT1 mutation exhibit cardiac hypertrophy and susceptibility to β-adrenergic stimulation-induced cardiac fibrosisResearch in context
    'Elsevier BV', 2019
    Co-Authors: Shingo Takahara, Tetsuya Niihori, Shinichi Inoue, Katsuhisa Matsuura, Yasumi Nakashima, Yoichi Matsubara, Yoshikatsu Saiki, Sachiko Miyagawa-tomita, Yoko Aoki
    Abstract:

    Background: Noonan syndrome (NS) is a genetic disorder characterized by short stature, a distinctive facial appearance, and heart defects. We recently discovered a novel NS gene, RIT1, which is a member of the RAS subfamily of small GTPases. NS patients with RIT1 mutations have a high incidence of hypertrophic cardiomyopathy and edematous phenotype, but the specific role of RIT1 remains unclear. Methods: To investigate how germline RIT1 mutations cause NS, we generated knock-in mice that carried a NS-associated Rit1 A57G mutation (Rit1A57G/+). We investigated the phenotypes of Rit1A57G/+ mice in fetal and adult stages as well as the effects of isoproterenol on cardiac function in Rit1A57G/+ mice. Findings: Rit1A57G/+ embryos exhibited decreased viability, edema, Subcutaneous Hemorrhage and AKT activation. Surviving Rit1A57G/+ mice had a short stature, craniofacial abnormalities and splenomegaly. Cardiac hypertrophy and cardiac fibrosis with increased expression of S100A4, vimentin and periostin were observed in Rit1A57G/+ mice compared to Rit1+/+ mice. Upon isoproterenol stimulation, cardiac fibrosis was drastically increased in Rit1A57G/+ mice. Phosphorylated (at Thr308) AKT levels were also elevated in isoproterenol-treated Rit1A57G/+ hearts. Interpretation: The A57G mutation in Rit1 causes cardiac hypertrophy, fibrosis and other NS-associated features. Biochemical analysis indicates that the AKT signaling pathway might be related to downstream signaling in the RIT1 A57G mutant at a developmental stage and under β-adrenergic stimulation in the heart. Fund: The Grants-in-Aid were provided by the Practical Research Project for Rare/Intractable Diseases from the Japan Agency for Medical Research and Development, the Japan Society for the Promotion of Science KAKENHI Grant. Keywords: Noonan syndrome, RIT1, Cardiac hypertrophy, Cardiac fibrosis, AK