Submerged Breakwater

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 1314 Experts worldwide ranked by ideXlab platform

Clement Bouvier - One of the best experts on this subject based on the ideXlab platform.

  • cross shore sandbars response to an artificial reef an intersite comparison
    Coastal Sediments 2019, 2019
    Co-Authors: Clement Bouvier, Kristen D Splinter, B Castelle, Y Balouin, M Blacka, B Dubarbier
    Abstract:

    While a clear improvement concerning aesthetic considerations using soft Submerged Breakwater is undeniable, their design has often focused on wave energy decrease in their lee, overlooking their impact on the dynamics of the nearby nearshore sandbar(s). At the beach of Sete (southeast France), the Submerged structure clearly affects the natural net offshore migration cycle (NOM) of the former double barred beach. On the contrary, at Narrowneck (Queensland, Australia), the deployment of a multi-functional Submerged structure does not affect the cross-shore sandbar processes. These contrasting behaviors are addressed using high frequency video monitoring. After discussing observations at both field sites, a process-based morphodynamic model provides insight into the morphological sandbars response to artificial reefs.

  • modeling the impact of the implementation of a Submerged structure on surf zone sandbar dynamics
    Journal of Marine Science and Engineering, 2019
    Co-Authors: Clement Bouvier, Bruno Castelle, Yann Balouin
    Abstract:

    Coastal defense strategies based on structures are increasingly unpopular as they are costly, leave lasting scars on the landscape, and sometimes have limited effectiveness or even adverse impacts. While a clear improvement concerning aesthetic considerations using soft Submerged Breakwater is undeniable, their design has often focused on wave transmission processes across the crest of the structure, overlooking short- to medium-term morphodynamic responses. In this study, we used a time- and depth-averaged morphodynamic model to investigate the impact of the implementation of a Submerged Breakwater on surf zone sandbar dynamics at the beach of Sete, SE France. The hydrodynamic module was calibrated with data collected during a field experiment using three current profilers deployed to capture rip-cell circulation at the edge of the structure. The model showed good agreement with measurements, particularly for the longshore component of the flow (RMSE = 0.07 m/s). Results showed that alongshore differential wave breaking at the edge of the Submerged Breakwater drove an intense (0.4 m/s) two-dimensional circulation for low- to moderate-energy waves. Simulations indicated that inner-bar rip channel development, which was observed prior to the Submerged reef implementation, was inhibited in the lee of the structure as rip-cell circulation across the inner bar disappeared owing to persistently low-energy breaking waves. The cross-shore sandbar dynamics in the lee of the structure were also impacted due to the drastic decrease of the offshore-directed flow over the inner-bar during energetic events. This paper highlights that implementation of a Submerged Breakwater results in larges changes in nearshore hydrodynamics that, in turn, can affect overall surf zone sandbar behavior.

  • Modeling the Impact of the Implementation of a Submerged Structure on Surf Zone Sandbar Dynamics
    MDPI AG, 2019
    Co-Authors: Clement Bouvier, Bruno Castelle, Yann Balouin
    Abstract:

    Coastal defense strategies based on structures are increasingly unpopular as they are costly, leave lasting scars on the landscape, and sometimes have limited effectiveness or even adverse impacts. While a clear improvement concerning aesthetic considerations using soft Submerged Breakwater is undeniable, their design has often focused on wave transmission processes across the crest of the structure, overlooking short- to medium-term morphodynamic responses. In this study, we used a time- and depth-averaged morphodynamic model to investigate the impact of the implementation of a Submerged Breakwater on surf zone sandbar dynamics at the beach of Sète, SE France. The hydrodynamic module was calibrated with data collected during a field experiment using three current profilers deployed to capture rip-cell circulation at the edge of the structure. The model showed good agreement with measurements, particularly for the longshore component of the flow (RMSE = 0.07 m/s). Results showed that alongshore differential wave breaking at the edge of the Submerged Breakwater drove an intense (0.4 m/s) two-dimensional circulation for low- to moderate-energy waves. Simulations indicated that inner-bar rip channel development, which was observed prior to the Submerged reef implementation, was inhibited in the lee of the structure as rip-cell circulation across the inner bar disappeared owing to persistently low-energy breaking waves. The cross-shore sandbar dynamics in the lee of the structure were also impacted due to the drastic decrease of the offshore-directed flow over the inner-bar during energetic events. This paper highlights that implementation of a Submerged Breakwater results in larges changes in nearshore hydrodynamics that, in turn, can affect overall surf zone sandbar behavior

  • video monitoring of sandbar shoreline response to an offshore Submerged structure at a microtidal beach
    Geomorphology, 2017
    Co-Authors: Clement Bouvier, Yann Balouin, Bruno Castelle
    Abstract:

    Abstract In early 2013, an 800-m long and 12-m wide Submerged Breakwater with its crest in 2-m depth was implemented at the wave-dominated barred beach of Sete, SE France, to fight against erosion and submersion hazards. Daily video images from April 2011 to April 2016 covering an alongshore distance of 3.5 km are used to analyse the response of both the sandbar(s) and the shoreline to the structure implementation. Results show that the Breakwater had a profound impact on the nearshore system, both shoreward of the structure and well away from it alongshore. A progressive rotation and linearisation of the sandbar was observed shoreward of the Submerged Breakwater. This resulted in the splitting of the sandbar adjacent to the structure during a net offshore sandbar migration event driven by a severe storm in December 2013. The typical formation of a salient or tombolo was not observed. Instead, shoreline coupled to the sandbar geometry, which resulted in a slight seaward migration of the shoreline in front of the structure. Overall, this study highlights that the role of the sandbar is critical to shoreline response to the implementation of Breakwaters on barred beaches.

Bruno Castelle - One of the best experts on this subject based on the ideXlab platform.

  • modeling the impact of the implementation of a Submerged structure on surf zone sandbar dynamics
    Journal of Marine Science and Engineering, 2019
    Co-Authors: Clement Bouvier, Bruno Castelle, Yann Balouin
    Abstract:

    Coastal defense strategies based on structures are increasingly unpopular as they are costly, leave lasting scars on the landscape, and sometimes have limited effectiveness or even adverse impacts. While a clear improvement concerning aesthetic considerations using soft Submerged Breakwater is undeniable, their design has often focused on wave transmission processes across the crest of the structure, overlooking short- to medium-term morphodynamic responses. In this study, we used a time- and depth-averaged morphodynamic model to investigate the impact of the implementation of a Submerged Breakwater on surf zone sandbar dynamics at the beach of Sete, SE France. The hydrodynamic module was calibrated with data collected during a field experiment using three current profilers deployed to capture rip-cell circulation at the edge of the structure. The model showed good agreement with measurements, particularly for the longshore component of the flow (RMSE = 0.07 m/s). Results showed that alongshore differential wave breaking at the edge of the Submerged Breakwater drove an intense (0.4 m/s) two-dimensional circulation for low- to moderate-energy waves. Simulations indicated that inner-bar rip channel development, which was observed prior to the Submerged reef implementation, was inhibited in the lee of the structure as rip-cell circulation across the inner bar disappeared owing to persistently low-energy breaking waves. The cross-shore sandbar dynamics in the lee of the structure were also impacted due to the drastic decrease of the offshore-directed flow over the inner-bar during energetic events. This paper highlights that implementation of a Submerged Breakwater results in larges changes in nearshore hydrodynamics that, in turn, can affect overall surf zone sandbar behavior.

  • Modeling the Impact of the Implementation of a Submerged Structure on Surf Zone Sandbar Dynamics
    MDPI AG, 2019
    Co-Authors: Clement Bouvier, Bruno Castelle, Yann Balouin
    Abstract:

    Coastal defense strategies based on structures are increasingly unpopular as they are costly, leave lasting scars on the landscape, and sometimes have limited effectiveness or even adverse impacts. While a clear improvement concerning aesthetic considerations using soft Submerged Breakwater is undeniable, their design has often focused on wave transmission processes across the crest of the structure, overlooking short- to medium-term morphodynamic responses. In this study, we used a time- and depth-averaged morphodynamic model to investigate the impact of the implementation of a Submerged Breakwater on surf zone sandbar dynamics at the beach of Sète, SE France. The hydrodynamic module was calibrated with data collected during a field experiment using three current profilers deployed to capture rip-cell circulation at the edge of the structure. The model showed good agreement with measurements, particularly for the longshore component of the flow (RMSE = 0.07 m/s). Results showed that alongshore differential wave breaking at the edge of the Submerged Breakwater drove an intense (0.4 m/s) two-dimensional circulation for low- to moderate-energy waves. Simulations indicated that inner-bar rip channel development, which was observed prior to the Submerged reef implementation, was inhibited in the lee of the structure as rip-cell circulation across the inner bar disappeared owing to persistently low-energy breaking waves. The cross-shore sandbar dynamics in the lee of the structure were also impacted due to the drastic decrease of the offshore-directed flow over the inner-bar during energetic events. This paper highlights that implementation of a Submerged Breakwater results in larges changes in nearshore hydrodynamics that, in turn, can affect overall surf zone sandbar behavior

  • video monitoring of sandbar shoreline response to an offshore Submerged structure at a microtidal beach
    Geomorphology, 2017
    Co-Authors: Clement Bouvier, Yann Balouin, Bruno Castelle
    Abstract:

    Abstract In early 2013, an 800-m long and 12-m wide Submerged Breakwater with its crest in 2-m depth was implemented at the wave-dominated barred beach of Sete, SE France, to fight against erosion and submersion hazards. Daily video images from April 2011 to April 2016 covering an alongshore distance of 3.5 km are used to analyse the response of both the sandbar(s) and the shoreline to the structure implementation. Results show that the Breakwater had a profound impact on the nearshore system, both shoreward of the structure and well away from it alongshore. A progressive rotation and linearisation of the sandbar was observed shoreward of the Submerged Breakwater. This resulted in the splitting of the sandbar adjacent to the structure during a net offshore sandbar migration event driven by a severe storm in December 2013. The typical formation of a salient or tombolo was not observed. Instead, shoreline coupled to the sandbar geometry, which resulted in a slight seaward migration of the shoreline in front of the structure. Overall, this study highlights that the role of the sandbar is critical to shoreline response to the implementation of Breakwaters on barred beaches.

. Zulkarnain - One of the best experts on this subject based on the ideXlab platform.

  • Kajian Model Fisik Pengaruh Freeboard, Crest Width, Periode Gelombang dan Susunan Buis Beton Sebagai Pemecah Gelombang Tenggelam Ambang Rendah (Pegar) Dalam Mereduksi Gelombang
    2017
    Co-Authors: . Zulkarnain
    Abstract:

    Pusat Penelitian dan Pengembangan (Puslitbang) Air saat ini sedang mengembangkan teknologi Pemecah Gelombang Ambang Rendah (PEGAR). Penulis tertarik untuk meneliti material yang mudah diperoleh di lapangan yakni RCP beton silinder. Mengenai bagaimana kemampuan nya dalam fungsinya sebagai pemecah gelombang tenggelam yang ramah lingkungan dan ekonomis. Kajian tentang koefesien transmisi pada struktur ambang rendah menggunakan material RCP beton silinder ini dilaksanakan menggunakan metode permodelan fisik 2D di Laboratorium. Dengan tahapan terdiri dari kajian pustaka, pengembangan teori, dan uji model fisik 2D di Laboratorium yang merupakan tahapan pengumpulan data primer, kemudian dilanjutkan dengan tahapan analisis data, pembahasan hasil penelitian, dan kesimpulan. Uji model fisik 2D dengan skala 1:20 dilakukan di Laboratorium Keairan dan Teknik Pantai, Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, ITS Surabaya. Uji model fisik transmisi gelombang merupakan pengujian mengenai respon gelombang terhadap struktur dalam hal ini struktur yang dimaksudkan adalah pemecah gelombang atau Breakwater. Pada penelitian ini Breakwater yang digunakan adalah tipe tenggelam atau Submerged Breakwater menggunakan buis beton. Ada beberapa hal yang ingin di perhatikan dari penelitian ini antara lain untuk mengetahui bagaimana respon dari struktur Breakwater terhadap gelombang yang melewatinya, maka dilakukan beberapa variasi dari struktur dengan membuat struktur dengan tiga variasi susunan dan freeboard yakni kedalaman relatif dengan lebar puncak struktur (crest width) adalah tetap atau konstan. Sedangkan parameter dari gelombang yang divariasikan adalah periode gelombang. Gelombang uji yang dibangkitkan pada wave flume pada penelitian ini adalah menggunakan gelombang reguler. Untuk setiap skenario dilakukan beberapa kali percobaan dengan variasi freeboard, susunan Breakwater dan periode gelombang. Data yang dihasilkan dari Alat USSD Logger merupakan data tinggi muka air wave flume ke sensor. Posisi muka air tenang adalah posisi Null Offset alat. Data yang dihasilkan dari sensor dimuat ke dalam tabel. Setiap variasi pengujian dilakukan menggunakan USSD selama satu menit (60 detik) running menghasilkan data berkisar 1100 s/d 1200 data. Dari hasil analisa mengenai pengaruh pemasangan Breakwater tenggelam dengan menggunakan buis beton terhadap nilai peredaman gelombang, maka bisa disimpulkan faktor yang sangat berpengaruh adalah freeboard dan susunan buis beton. Skenario A (rigid vertical massive) mampu menghasilkan nilai kt terkecil yakni 0,33. Karena posisi susunan A sangat baik digunakan untuk peredaman gelombang didalam air (tenggelam) dengan freeboard kecil dan juga freeboard yang besar. Sementara untuk skenario B (rigid horyzontal massive) dengan nilai peredaman 0,5, sedang kan skenario C (rigid permeable) hanya mampu menghasilkan nilai kt sebesar 0.71. Secara garis besar skenario A lebih baik daripada skenario B dan C. ============================================================================================ The Research and Development Center (Puslitbang) water is currently developing the Threshold Wave Breaker technology (PEGAR). The author is interested to examine the material that is easily obtained in the field of RCP concrete cylinder. It is about how its ability in its function as Breakwater an environmentally friendly and economical factor. The study of transmission coefficients on low threshold structure using buis concrete material was carried out using 2D physical modeling method in the laboratory, with stages consisting of literature review, theoretical development, and 2D physical model test in the laboratory which was the primary data collection stage, followed by stages Data analysis, discussion of research results, and conclusions. 2D physical model test with 1:20 scale done in Water Laboratory and Coastal Engineering, Department of Civil Engineering, Faculty of Civil Engineering and Planning, ITS Surabaya. The physical model of the wave transmission test is the test of the wave response to the structure in which case the structure is meant to be Breakwaters or Breakwaters. In this research Breakwater used is Submerged or Submerged Breakwater type using buis of concrete. There are several things to note from this research, among others, to find out how the response of the Breakwater structure to the waves through it, then made some variation of the structure by creating a structure with three variations of the arrangement and freeboard ie the relative depth with the crest width of the structure (crest width) Is fixed or constant. While the parameters of the wave varied is the wave period. The test wave generated on the wave flume in this study is using regular waves. For each scenario several experiments with variations of freeboard, Breakwater arrangement and wave period are performed. The data generated from the USSD Logger Tool is the waveform wave height data to the sensor. The calm water position is the position of the Null Offset tool. The data generated from the sensor is loaded into the table. Each test variation is performed using USSD for one minute (60 seconds) running resulting in data ranging from 1100 s / d to 1200 data. From the analysis of the effect of the installation of Submerged Breakwater using buis concrete to the wave damping value, it can be concluded that the factors that are very influential is the freeboard and the composition of concrete buis. Scenario A (rigid vertical massive) is capable of producing the smallest value of kt ie 0.33. Because the position of the arrangement of A is very well used to damp wave in the water (Submerged) with a small freeboard and also a large freeboard. As for scenario B (rigid horyzontal massive) with a damping value of 0.5, while the scenario C (rigid permeable) is only able to produce kt value of 0.71. Scenario A is better than scenario B and C

Salamun S. - One of the best experts on this subject based on the ideXlab platform.

  • Studi Pemanfaatan Bangunan Pantai sebagai Proteksi Jalan Tol Semarang – Demak
    'Faculty of Engineering Diponegoro University', 2017
    Co-Authors: Kristian A., Wijaya S. S., Sriyana S., Salamun S.
    Abstract:

    Jalan Nasional Semarang – Demak merupakan jalan nasional di bagian utara Pulau Jawa yang menghubungkan antara Kota Semarang dengan Kabupaten Demak. Pertumbuhan arus lalu lintas yang pesat menimbulkan kepadatan di Jalan Nasional Semarang – Demak, sehingga pemerintah memberikan respon dengan adanya perencanaan Jalan Tol Semarang – Demak. Jalan Tol Semarang – Demak tersebut direncanakan melewati garis Pantai Morosari, Kabupaten Demak. Garis Pantai Morosari sangat terpengaruh oleh aspek hidrodinamika kelautan seperti abrasi, erosi, dan sedimentasi. Karena permasalahan tersebut, perlu adanya bangunan perlindungan pantai yang berguna melindungi garis Pantai Morosari serta dapat melindungi trase rencana Jalan Tol Semarang – Demak nantinya. Perencanaan bangunan pantai pelindung jalan tol Semarang – Demak ini mempertimbangkan gejala – gejala kelautan akibat gelombang laut dan pasang surut air laut. Data yang digunakan adalah data angin dari Stasiun Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) Semarang pada jangka waktu Januari 2007 sampai Mei 2017; data pasang surut dari Stasiun Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) Semarang pada tanggal 11 Mei 2017 – 25 Mei 2017; data tanah dari Laboratorium Mekanika Tanah, Fakultas Teknik, Departemen Teknik Sipil, Universitas Diponegoro; dan peta batimetri dari Dinas Perikanan dan Kelautan Provinsi Jawa Tengah. Metode analisis yang digunakan adalah metode Admiralty untuk menghitung elevasi pasang surut air laut; metode SMB untuk menghitung kedalaman dan ketinggian gelombang di perairan dalam dan perairan dangkal; program GENESIS untuk memprediksi Perubahan garis pantai; dan program PLAXIS untuk mengetahui daya dukung tanah dan penurunan tanah; serta dilakukan pemilihan dan perencanaan bangunan pelindung pantai untuk proteksi jalan tol Semarang – Demak. Berdasarkan hasil analisis tugas akhir ini, didapatkan elevasi pasang surut adalah HHWL = +154,07 cm, MHWL = +122,49 cm, MSL = +83,46 cm, MLWL = +44,42 cm, dan LLWL = +12,85 cm; jenis pasang surut adalah campuran condong ke harian ganda; kedalaman gelombang pecah sebesar 2,12 m dengan ketinggian gelombang pecah 1,7 m; didapatkan jenis bangunan pelindung terpilih adalah kombinasi antara offshore Submerged Breakwater dan revetment; ketinggian gelombang di area bangunan offshore Submerged Breakwater adalah 1,864 m; ketinggian gelombang di area bangunan revetment adalah 0,49 m; offshore Submerged Breakwater direncanakan 4 (empat) buah pada kedalaman – 3,5 m dengan dimensi panjang 400 m; lebar 19,35 m; tinggi 3,1 m; dengan jarak antar Breakwater 150 m; revetment sepanjang garis pantai yang terdapat trase jalan tol sebesar 2300 m pada kedalaman – 0,5 m dengan dimensi panjang 2300 m; lebar 9 m; dan tinggi 2,4 m. Terjadi penurunan sebesar 5,371 cm pada bangunan Breakwater dan sebesar 5,008 cm pada bangunan revetment dengan menggunakan bantuan program PLAXIS

Siek,, Stefanus Hendra Wijaya - One of the best experts on this subject based on the ideXlab platform.

  • Studi Pemanfaatan Bangunan Pantai Sebagai Proteksi Jalan Tol Semarang–DEMAK
    2018
    Co-Authors: Agung Kristian, Siek,, Stefanus Hendra Wijaya
    Abstract:

    Jalan Nasional Semarang – Demak merupakan jalan nasional di bagian utara Pulau Jawa yang menghubungkan antara Kota Semarang dengan Kabupaten Demak. Pertumbuhan arus lalu lintas yang pesat menimbulkan kepadatan di Jalan Nasional Semarang – Demak, sehingga pemerintah memberikan respon dengan adanya perencanaan Jalan Tol Semarang – Demak. Jalan Tol Semarang – Demak tersebut direncanakan melewati garis Pantai Morosari, Kabupaten Demak. Garis Pantai Morosari sangat terpengaruh oleh aspek hidrodinamika kelautan seperti abrasi, erosi, dan sedimentasi. Karena permasalahan tersebut, perlu adanya bangunan perlindungan pantai yang berguna melindungi garis Pantai Morosari serta dapat melindungi trase rencana Jalan Tol Semarang – Demak nantinya. Perencanaan bangunan pantai pelindung jalan tol Semarang – Demak ini mempertimbangkan gejala – gejala kelautan akibat gelombang laut dan pasang surut air laut. Data yang digunakan adalah data angin dari Stasiun Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) Semarang pada jangka waktu Januari 2007 sampai Mei 2017; data pasang surut dari Stasiun Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) Semarang pada tanggal 11 Mei 2017 – 25 Mei 2017; data tanah dari Laboratorium Mekanika Tanah, Fakultas Teknik, Departemen Teknik Sipil, Universitas Diponegoro; dan peta batimetri dari Dinas Perikanan dan Kelautan Provinsi Jawa Tengah. Metode analisis yang digunakan adalah metode Admiralty untuk menghitung elevasi pasang surut air laut; metode SMB untuk menghitung kedalaman dan ketinggian gelombang di perairan dalam dan perairan dangkal; program GENESIS untuk memprediksi perubahan garis pantai; dan program PLAXIS untuk mengetahui daya dukung tanah dan penurunan tanah; serta dilakukan pemilihan dan perencanaan bangunan pelindung pantai untuk proteksi jalan tol Semarang – Demak. Berdasarkan hasil analisis tugas akhir ini, didapatkan elevasi pasang surut adalah HHWL = +154,07 cm, MHWL = +122,49 cm, MSL = +83,46 cm, MLWL = +44,42 cm, dan LLWL = +12,85 cm; jenis pasang surut adalah campuran condong ke harian ganda; kedalaman gelombang pecah sebesar 2,12 m dengan ketinggian gelombang pecah 1,7 m; didapatkan jenis bangunan pelindung terpilih adalah kombinasi antara offshore Submerged Breakwater dan revetment; ketinggian gelombang di area bangunan offshore Submerged Breakwater adalah 1,864 m; ketinggian gelombang di area bangunan revetment adalah 0,49 m; offshore Submerged Breakwater direncanakan 4 (empat) buah pada kedalaman – 3,5 m dengan dimensi panjang 400 m; lebar 19,35 m; tinggi 3,1 m; dengan jarak antar Breakwater 150 m; revetment sepanjang garis pantai yang terdapat trase jalan tol sebesar 2300 m pada kedalaman – 0,5 m dengan dimensi panjang 2300 m; lebar 9 m; dan tinggi 2,4 m. Terjadi penurunan sebesar 5,371 cm pada bangunan Breakwater dan sebesar 5,008 cm pada bangunan revetment dengan menggunakan bantuan program PLAXIS