Sun Scald

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 9 Experts worldwide ranked by ideXlab platform

P I Suqin - One of the best experts on this subject based on the ideXlab platform.

  • studies on the emerging reasons and precautionary measures of bagging apple Sun Scald
    Journal of Henan Vocation-technical Teachers College, 2004
    Co-Authors: P I Suqin
    Abstract:

    Apple Sun Scald is a frequently-occurred physiology disorder,and in recent years it's severe in the bagged-apple orchards.Its mechanism is that the temperature on the surface of bagged apples increases by 4~5℃ and has an accelerating-increase,and thus worsens the disease. It makes less than 2% of incidence of bagged apples that the time of accelerating increase in the temperature is avoided while bagging and increases fertilizer, moisture management and living capacity etc.

Rajani Kanta Sahu - One of the best experts on this subject based on the ideXlab platform.

  • bio controlling effect of leaf extract of tagetes patula l marigold on growth parameters and diseases of tomato
    Pakistan Journal of Biological Sciences, 2017
    Co-Authors: Gayatri Nahak, Rajani Kanta Sahu
    Abstract:

    BACKGROUND The genus Tagetes (Asteraceae) is native to Americas but some of its members (in particular T. erecta and T. patula) commonly known as marigolds were naturalized in the old world (India, North Africa and Europe) as early as in 16th century. The flowers of French marigold (Tagetes patula L.) are widely used in folk medicine, in particular for treating inflammation-related disorders. MATERIALS AND METHODS This study investigated the potential use of marigold (Tagetes patula L.) flower aqueous flower extract by spaying method on tomato plants on a weekly basis and the data of growth, yield and disease of tomato pants were observed from 10th day onwards under field condition. RESULTS The marigold flower extract showed significant increase in shoot height, number of branches, number of leaves, number of buds, number of flowers and number of fruits of tomato plant, while significant reduction in various diseases of tomato plants over control at probability level ***p<0.001. The percentage of reduction of disease was calculated after the spray of marigold flower aqueous extract on plants. The marigold flower extract was found effectively in controlling canker (62.82%), early blight (61.53%), wilt (18.42%), fruit spot (27.41%), blossom end rot (50.43%) and Sun Scald (26.44%) in comparison to controls under field condition. CONCLUSION The findings are in line with the bio-controlling properties of marigold preparations as bio-pesticide confirmed in growth and yield of tomato plants. Thus, marigold can contribute in reducing use of chemical pesticides and act as a good alternative to synthetic pesticides.

Gayatri Nahak - One of the best experts on this subject based on the ideXlab platform.

  • bio controlling effect of leaf extract of tagetes patula l marigold on growth parameters and diseases of tomato
    Pakistan Journal of Biological Sciences, 2017
    Co-Authors: Gayatri Nahak, Rajani Kanta Sahu
    Abstract:

    BACKGROUND The genus Tagetes (Asteraceae) is native to Americas but some of its members (in particular T. erecta and T. patula) commonly known as marigolds were naturalized in the old world (India, North Africa and Europe) as early as in 16th century. The flowers of French marigold (Tagetes patula L.) are widely used in folk medicine, in particular for treating inflammation-related disorders. MATERIALS AND METHODS This study investigated the potential use of marigold (Tagetes patula L.) flower aqueous flower extract by spaying method on tomato plants on a weekly basis and the data of growth, yield and disease of tomato pants were observed from 10th day onwards under field condition. RESULTS The marigold flower extract showed significant increase in shoot height, number of branches, number of leaves, number of buds, number of flowers and number of fruits of tomato plant, while significant reduction in various diseases of tomato plants over control at probability level ***p<0.001. The percentage of reduction of disease was calculated after the spray of marigold flower aqueous extract on plants. The marigold flower extract was found effectively in controlling canker (62.82%), early blight (61.53%), wilt (18.42%), fruit spot (27.41%), blossom end rot (50.43%) and Sun Scald (26.44%) in comparison to controls under field condition. CONCLUSION The findings are in line with the bio-controlling properties of marigold preparations as bio-pesticide confirmed in growth and yield of tomato plants. Thus, marigold can contribute in reducing use of chemical pesticides and act as a good alternative to synthetic pesticides.

Smith Peta-anne - One of the best experts on this subject based on the ideXlab platform.

  • Stimulation of Western Australian Sandalwood (Santalum spicatum) oil production using multiple treatments
    Edith Cowan University Research Online Perth Western Australia, 2019
    Co-Authors: Smith Peta-anne
    Abstract:

    Sandalwood is an important international commodity, recognised for its aromatic oil which is a key ingredient in many fragrances and cosmetics. Western Australian (WA) sandalwood (Santalum spicatum) is known to be a cheaper alternative for the superior Indian sandalwood (Santalum album) as it has a lower oil content and lower quality oil. The natural stocks of S. album have declined due to illegal poaching, mismanagement, and disease. WA sandalwood’s natural stands have also reduced due to historical mismanagement. As a result, WA sandalwood (S. spicatum) has been established in plantations in the southern half of WA to attempt to meet the demands of the sandalwood industry. Plantation WA sandalwood is promoted to farmers as agroforestry, with the promise of economic and environmental benefits. While these benefits are attractive, sandalwood has an estimated 25 year rotation. This research aimed to determine the effect of physical and chemical treatments on oil production and heartwood formation in WA sandalwood, with the aim being to increase oil production, thus allowing the time between establishment and harvesting to be reduced. This study was conducted over three plantations in the Wheatbelt region of Western Australia; ‘Sandawindy’, ‘Kylie Reserve’, and ’Brookton’. At each site, four treatments were applied: a dowel soaked with the plant hormone Methyl Salicylate (MeSA) and inserted into the tree (Treated Dowel treatment), a dowel with no MeSA inserted into the tree (Blank Dowel treatment), a drill hole left empty (Empty Drill treatment), and a section of bark removed from the tree (Bark Removed treatment), as well as a group of trees left as a control for comparison. The Blank Dowel and Empty Drill treatments were established to determine if any significant increases of sandalwood oil in the Treated Dowel treatment were a result of the MeSA, the foreign dowel, or drilling into the tree. The Bark Removed treatment was used to mimic drysidedness; a condition that occurs naturally in the Rangelands of WA as a result of Sun Scald. The sandalwood trees were measured and treated in November of 2016. Plantations were divided into 30 evenly sized blocks per site, with 6 replicate blocks allocated to each treatment and control group. Two replicate blocks for every treatment and control group at each plantation were harvested in November of 2017, and all trees were remeasured. Of the approximate 300 trees harvested, 150 were cored using a 12 mm auger drill. These core samples were analysed for oil yield and composition at Wescorp’s laboratory. The total oil was measured an analysed, as well as the oil constituents α-santalol, β-santalol, farnesol, nuciferol, and β-bisabalol oil compositions (percentage) and yield (%w/w). All trees that were harvested ii were cut into 8 discs measuring 25 mm each, and the percentage of heartwood area at each height was measured and recorded. All data was statistically analysed using a univariate general linear model. There was no treatment that consistently increased total oil or oil component yields, qualities, or heartwood area percentages. The Empty Drill treatment resulted in more oil production than the control group on the most occasions, however it did not consistently increase oil production. This showed that the presence of MeSA did not have a significant effect on oil production, and the physical wounding of the tree had the overall greatest effect. The Kylie Reserve plantation showed low oil yield and low heartwood area percentages compared to the Sandawindy and Brookton plantations, although also showed the highest oil yields. This research, while not showing significant increases in oil production for the different treatments used, has giving a promising indication that a longer time between treatment and harvesting could influence the oil production. Further research extending this study should be conducted to give more information on the effect of the treatments on oil production