Sustainable Building Council

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 4167 Experts worldwide ranked by ideXlab platform

Seyed Salehi, Seyed Shahabaldi - One of the best experts on this subject based on the ideXlab platform.

  • En jämförande studie av Product Environmental Footprint (PEF) och EN 15804 inom byggsektorn med fokus på slutet av livscykeln och att minska subjektiviteten i formlerna
    KTH Hållbar utveckling miljövetenskap och teknik, 2020
    Co-Authors: Seyed Salehi, Seyed Shahabaldi
    Abstract:

    One of the main polluting industries in the world with high environmental impact is the construction industry which also generates a huge amount of waste. To overcome the seburdens, we need to reduce the impacts through new solutions, technologies and by injecting circular economy concept into the industry. Construction and Building material industry are responsible for nearly 11% of all GHG emissions and the usage of residential/commercial Buildings is contributing to 28% of all GHG emissions globally. the construction industry is also responsible for 35% of the total wastes in the European Union. Both linear economy and emissions of the construction sector are becoming more important in recent years that led to the development of many standards, frameworks and innovations. Reporting environmental burdens of the construction elements, products and construction works or construction projects is one of the ways for emissions accounting. Therefore, a report on environmental impacts of goods or services is called environmental product claims which can be based on a single criterion (like CO2 emission or % of recycled content) or based on a complete LCA study with multiple impacts. These reports have been classified by ISO 14020 series in three types, Type I (third-party certified label), Type II (self-declared claims) and Type III (the third party verified declaration based on LCA study). The third type is known as Environmental Product Declaration (EPD). To make the LCA results in EPD:s comparable, Product Category Rules (PCR) are developed. The regulations for the construction materials are defined in EN 15804 so the declarations of the Building materials and construction works according to these regulations are compliant with EN 15804. Another framework for environmental declarations called, Product Environmental Footprint (PEF) is developed in Europe. Besides Business to Business declarations that are the target group for EN 15804, PEF also includes environmental labelling (type I) with consumers as the target group. The PCR:s from the updated version of EN15804:2012+A2:2019 can be regarded as the parallel methodology specification for the construction materials in the PEF system. Other product groups' rules and specifications are based on the PEF guidance document. The overall aims of this study are to compare the EN 15804 and PEF formulas concentrating on credits at the end of life and after the end of life stage and to reduce the subjectivity of two variables, energy margin, and recycling rate in the assessment of recycling alternatives after the end-of-life stage. Calculated credits can be included differently in the environmental declarations depending on the methodological approach. PEF includes the End-of-Life (EoL) credits into the Life Cycle Assessment (LCA) study and adds them to the product's performance results, while EN 15804 mandates to report the credits from recycling/recovery separately as supplementary information to the products environmental performance. To compare the credits that are calculated according to PEF and EN 15804, a separate indicator is virtually defined for PEF in order to calculate all the credits separately and compare the results with EN 15804 Module Dresults to give the reader an overview of the most beneficial uses of the construction waste according to PEF and EN 15804. Reducing subjectivity of choosing recycling rate has been addressed by developing more transparent and less subjective tool by integrating and using DGNB (German Sustainable Building Council) and BRE (center for Building research in the UK) methods. For energy margin, this has been done by integrating energy margin calculation tool by CDM (Clean Development Mechanism, United Nations) and find the contribution of different materials to the environmental benefits in and after the end of life stage of the Building lifecycle. However, the DGNB and BRE methods require further development, since they are not originally developed for LCA studies and just used as the only current options available in order to make recyclability assessment methods compatible with LCA studies. Other methods, specifically for LCA, can also be developed in the future. Based on an inventory of the components and materials used in a real Building, the most environmental benefits (credits) from downstream recycling/recovery considering all materials are generated for the wooden products when using the EN 15804 formula, while aluminium is in the second place. On the other hand, aluminium is in the first place and wood is second using the PEF formula. Aluminium has by far the most benefits (credits) considering the credits per kg of each material, due to the huge recycling potential that aluminium has and will replace primary aluminium in the future. Unlike PEF, EN 15804 reports all credits separately outside of the LCA system boundary. This is very beneficial since the correct verified LCA will not beaffected by the credits that are given based on current technologies when the end of life of the Building components are between 40 to 120 years away from today.En av de industrier i världen med högst miljöpåverkan är byggbranschen som också genererar en enorm mängd avfall. För att hantera detta måste vi minska effekterna genom nya lösningar, teknologier och genom att använda konceptet cirkulär ekonomi i byggbranschen. Bygg- och byggnadsmaterialindustrin är ansvarig för nästan 11% av alla växthusgasutsläpp och användningen av bostäder / kommersiella byggnader bidrar till 28% av allaväxthusgasutsläpp globalt. Byggbranschen ansvarar också för 35% av det totala avfallet i EU. Både linjär ekonomi och utsläpp från byggsektorn har blivit viktigare under de senaste åren vilket har lett till utveckling av många standarder, ramverk och innovationer. Att rapportera miljöbelastningar för byggelement, produkter och bygg- och anläggningsarbeten är ett av sätten för utsläppsredovisning. Därför kallas en rapport om miljöpåverkan av varor eller tjänster Miljömärkning som kan baseras på ett enda kriterium (som CO2-utsläpp eller procent av återvunnet innehåll) eller baserat på en fullständig LCAstudie med flera effekter. Dessa rapporter har klassificerats enligt ISO 14020-serien i tre typer, typ I (tredjepartscertifierad märkning), typ II (självdeklarerade påståenden) och typ III (tredjepart verifierad deklaration baserad på LCA-studie). Den tredje typen är känd som Miljövarudeklaration/Environmental Product Declaration (EPD). För att göra LCA-resultat i EPD:er jämförbara, utvecklas Product Category Rules (PCR) (Produktkategoriregler). Regler för byggnadsmaterialen definieras i EN 15804, så deklarationerna om byggnadsmaterial och byggnadsarbeten enligt dessa regler överensstämmer med EN 15804. Ett annat ramverk för miljödeklaration är ProductEnvironmental Footprint (PEF) som är utvecklad inom EU. Förutom Business to Businessdeklarationer som är målgruppen för EN 15804 inkluderar PEF också miljömärkning (typ I) med konsumenter som målgrupp. PCR:erna från den uppdaterade versionen av EN 15804:2012 + A2: 2019 kan betraktas som den parallella metodspecifikationen för byggmaterialen i PEF-systemet. Andra produktgruppers regler och specifikationer är baserade på PEFs vägledningsdokument. De övergripande syftena med denna studie är att jämföra formlerna EN 15804 och PEF som koncentrerar sig på krediter i slutet av livscykeln och att minska subjektiviteten för två variabler, energimarginal och återvinningsgrad vid bedömningen av återvinningsalternativ i slutet av livscykeln. Beräknade krediter kan inkluderas olika i miljödeklarationerna beroende på den valda metoden. PEF inkluderar slutet av livscykeln (EoL)-krediter i livscykelanalys (LCA) -studien och lägger dem till produktens resultat, medan EN 15804 kräver att krediterna från återvinning rapporteras separat som kompletterande information till produkternas miljöprestanda. För att jämföra krediter som beräknas enligt PEF och EN 15804, definieras en virtuell separat indikator för PEF för att beräkna alla krediter separat och jämföra resultaten med EN 15804 Modul D-resultat för att ge läsaren en översikt över de mest fördelaktiga användning av byggavfall enligt PEF och EN 15804. Olika sätt att minska subjektiviteten i valet av återvinningsgrad behandlas genom att utveckla mer transparenta och mindre subjektiva verktyg med hjälp av metoder från DGNB (German Sustainable Building Council) och BRE (Center for Building research, UK). Energimarginal behandlas genom att integrera ett verktyg för energimarginaler från CDM (Clean Development Mechanism, FN) och hitta bidraget från olika material till miljöfördelarna i och efter livscykeln för byggnaden. DGNB och BRE metoderna kräver emellertid ytterligare utveckling, eftersom de inte ursprungligen är utvecklade för LCA-studier och bara används som de enda tillgängliga alternativen för att göra utvärderingsmetoder för återvinningsbarhet kompatibla med LCA-studier. Andra metoder, speciellt för LCA, kan också utvecklas i framtiden. Baserat på en inventering av komponenter och material som används i en riktig byggnad, genereras de största miljömässiga fördelarna (krediter) av nedströms återvinning av träprodukter när man använder EN 15804-formeln, medan aluminium ligger på andra plats. Å andra sidan är kommer aluminium i första hand och trä kommer på andra plats med PEFformeln. Aluminium har överlägset flest fördelar (krediter) per kg av varje material, på grundav den enorma återvinningspotentialen som aluminium har och kommer att ersätta primärt aluminium i framtiden. Till skillnad från PEF rapporterar EN 15804 alla krediter separat utanför LCA-systemgränsen. Detta är mycket fördelaktigt eftersom den korrekta verifierade LCAn inte kommer att påverkas av de krediter som ges baserat på nuvarande teknik när byggnadskomponenternas livslängd är mellan 40 och 120 år från idag

N Riediger - One of the best experts on this subject based on the ideXlab platform.

  • BIM as a tool for Green Building Certifications: an evaluation of the energy category of LEED, BREEAM and DGNB
    Journal of Physics: Conference Series, 2019
    Co-Authors: S Romano, N Riediger
    Abstract:

    The Architecture, Engineering, and Construction (AEC) industry faces essential challenges related to the three Sustainable pillars (social, economic and environmental). For instance, to decrease the carbon emissions, the consumption of energy and raw materials, to design Sustainable cities and to improve the methodologies and technologies used to minimize cost and environmental problems. One alternative to overcome these challenges is the Green Building Certifications (GBCs), as for example Leadership in Energy and Environmental Design (LEED), Building Research Establishment Environmental Assessment Methodology (BREEAM), and German Sustainable Building Council (DGNB), and the new tools to support their process of implementation, for instance Building Information Modelling (BIM). The main objective of this paper is to study the viability of using BIM in the process of certification of energy category of LEED, BREEAM and DGNB for new projects using as a case study the Building EUREF HAUS 12 – 13 located in Berlin - Germany. The methodology established is descriptive-exploratory and considers four research techniques, bibliography review, semi-structured interviews, BIM case study analysis, and work meetings with a BIM expert. The results illustrate that BIM can support all the energy requirements of LEED, BREEAM and DGNB and that despite the challenges that represent the implementation of BIM in GBCs, the advantages of it increases the efficiency of this process significantly.

F. Huber - One of the best experts on this subject based on the ideXlab platform.

  • A comparative study of DGNB, LEED and BREEAM certificate systems in urban sustainability
    The Sustainable City VII, 2012
    Co-Authors: A. Zeinal Hamedani, F. Huber
    Abstract:

    Certification systems are generally used for the purpose of sustainability assessment in Buildings or neighbourhoods, and indexes mainly focus on construction issues related to the civil engineering activities but not usually in urban management programs. As an attempt to tackle this issue, the “German Sustainable Building Council” has created and developed a certification system according to the three aspects of economical, ecological and social culture in planning, construction, and operation of Buildings in Germany. This paper focuses on the brief history and introduction of these three kinds of certification systems named as DGNB, LEED and BREEAM. The certification process, certification types, their criteria and rating system are all reviewed in five sections of this paper. Finally the results of analysis and comparison of these systems along with the advantages and disadvantages of them which will be helpful for assessment of two main subjects of “Sustainable urban development strategies” and “tools for sustainability assessment in urban communities” are discussed. As a conclusion it is shown that certification systems are quantitative standards to measure the concept of Sustainable development in any region. By defining a set of criteria and a rating system to score them, these systems assess projects during a specific process. The result of this assessment can be useful for different groups, e.g. national and local governments, users, planners, builders, owners, investors, etc. It can be concluded that identifying comprehensive objectives, adopting proper strategies to realize those objectives, applying certification systems to control the performed activities, and correcting the objectives and strategies will definitely guarantee Sustainable development achievements.

Benedetta Bossi - One of the best experts on this subject based on the ideXlab platform.

  • Construction Site Design: A Sustainable Approach
    Modern Methods and Advances in Structural Engineering and Construction(ISEC-6), 2011
    Co-Authors: Marco L. Trani, Benedetta Bossi
    Abstract:

    The Research Unit TISCo (Innovative Technology for Construction Sustainability) of B.E.S.T. (Building Environment Science & Technology) Department of Milan Polytechnic carried out a study concerning the realization of guidelines for Sustainable public construction. Moreover Lombardy region has joined the Sustainable Building Council association in order to promote more Sustainable Building processes. As references to formulate the evaluation models we have used both Leed Reference Guide for Green Building Design Construction and ITACA Guidelines. In particular, every design discipline involved in the research have to develop models to evaluate the design sustainability. This paper first proposes an analysis of the ‘not wasteable’ resources and the exigencies, then an evaluation breakdown structure in order to evaluate sustainability of construction site design

Guillaume Habert - One of the best experts on this subject based on the ideXlab platform.

  • Design-Integrated LCA Using Early BIM
    Designing Sustainable Technologies Products and Policies, 2018
    Co-Authors: Alexander Hollberg, Julia Tschetwertak, Sven Schneider, Guillaume Habert
    Abstract:

    Life Cycle Assessment (LCA) is increasingly used for Buildings, however, mostly for post-design evaluation of the environmental impact. To use the results for optimization, LCA has to be integrated in the early design stages. While Building Information Modelling (BIM) is more and more applied in detailed design stages, simple 3D models are typically used to compare design variants in early stages. The objective of this paper is to introduce a simplified, design-integrated method based on these early BIM models with limited information. The early BIM-LCA method uses simple 3D geometry and a parametric LCA model. Methodological simplifications are introduced and a single indicator based on the certification system of the German Sustainable Building Council (DGNB) is used to provide an intuitive real-time feedback for the designer. The method is applied to the conceptional design of a residential neighbourhood. The results highlight the great potential of using simplified LCA to quantify environmental performance for decision-making in early design stages.