Ternary Diagram

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 10650 Experts worldwide ranked by ideXlab platform

Vincent Gerbaud - One of the best experts on this subject based on the ideXlab platform.

  • heterogeneous extractive batch distillation of chloroform methanol water feasibility and experiments
    Chemical Engineering Science, 2008
    Co-Authors: R Van Kaam, Ivonne Rodriguezdonis, Vincent Gerbaud
    Abstract:

    Abstract A novel heterogeneous extractive distillation process is considered for separating the azeotropic mixture chloroform–methanol in a batch rectifying column, including for the first time an experimental validation of the process. Heterogeneous heavy entrainer water is selected inducing an unstable Ternary heteroazeotrope and a saddle binary heteroazeotrope with chloroform (Ternary Diagram class 2.1-2b). Unlike the well-known heterogeneous azeotropic distillation process and thanks to continuous water feeding at the column top, the saddle binary heteroazeotrope chloroform–water is obtained at the column top, condensed and further split into the liquid–liquid decanter where the chloroform-rich phase is drawn as distillate. First, feasibility analysis is carried out by using a simplified differential model in the extractive section for determining the proper range of the entrainer flowrate and the reflux ratio. The operating conditions and reflux policy are validated by rigorous simulation with ProSim Batch Column ® where technical features of a bench scale distillation column have been described. Six reproducible experiments are run in the bench scale column matching the simulated operating conditions with two sequentially increasing reflux ratio values. Simulation and experiments agree well. With an average molar purity higher than 99%, more than 85% of recovery yield was obtained for chloroform and methanol.

  • Heterogeneous Extractive Batch Distillation of Chloroform - Methanol – Water : Feasibility and Experiments
    Chemical Engineering Science, 2008
    Co-Authors: R Van Kaam, Ivonne Rodriguez-donis, Vincent Gerbaud
    Abstract:

    A novel heterogeneous extractive distillation process is considered for separating the azeotropic mixture chloroform – methanol in a batch rectifying column, including for the first time an experimental validation of the process. Heterogeneous heavy entrainer water is selected inducing an unstable Ternary heteroazeotrope and a saddle binary heteroazeotrope with chloroform (Ternary Diagram class 2.1-2b). Unlike to well-known heterogeneous azeotropic distillation process and thanks to continuous water feeding at the column top, the saddle binary heteroazeotrope chloroform – water is obtained at the column top, condensed and further split into the liquid – liquid decanter where the chloroform-rich phase is drawn as distillate. First, feasibility analysis is carried out by using a simplified differential model in the extractive section for determining the proper range of the entrainer flowrate and the reflux ratio. The operating conditions and reflux policy are validated by rigorous simulation with ProSim Batch Column® where technical features of a bench scale distillation column have been described. Six reproducible experiments are run in the bench scale column matching the simulated operating conditions with two sequentially increasing reflux ratio values. Simulation and experiments agree well. With an average molar purity higher than 99%, more than 85% of recovery yield was obtained for chloroform and methanol.

Suojiang Zhang - One of the best experts on this subject based on the ideXlab platform.

  • study on ionic liquid cellulose coagulator phase Diagram and its application in green spinning process
    Journal of Molecular Liquids, 2019
    Co-Authors: Le Zhou, Xiaoyan Ji, Zhaoqing Kang, Suojiang Zhang
    Abstract:

    Abstract In this work, the cellulose phase separation behavior was investigated by using ionic liquids (ILs) as novel solvents to acquire a green process for cellulose fiber spinning. The cloud point titration method combined with the turbidity correlation equation was used to obtain the Ternary Diagram of IL/cellulose/coagulator throughout the whole compositional range. The effects of the type of ILs, the cellulose materials, the kind of coagulators and the regeneration temperatures for cellulose fiber manufacturing process on the phase separation behavior were studied systematically. It was found that the linearized cloud point (LCP) curve correlation fits to experimental data well and can be used to quantify the optimized coagulator, and among the studied cases, the system of [EMIM]DEP, cotton pulp and water with the regeneration temperature at 298.15 K is the best. Meanwhile, COSMO-RS was used to predict the interaction between solvent, cellulose and coagulator, and the comparison with the LCP correlation shows good agreement. The crystal structure of the regenerated cotton pulp was determined with XRD, and the result evidences that the crystal structure of the regenerated cellulose transforms from cellulose I to cellulose II. The crystallinity decreases from 96.0% (raw cotton pulp) to 85.6% after 24 h dissolution in [EMIM]DEP at 363.15 K, and it has a slight deviation from 24 h to 72 h, which illustrates that the spinning process can run continuously at 363.15 K when using [EMIM]DEP as the solvent.

Le Zhou - One of the best experts on this subject based on the ideXlab platform.

  • study on ionic liquid cellulose coagulator phase Diagram and its application in green spinning process
    Journal of Molecular Liquids, 2019
    Co-Authors: Le Zhou, Xiaoyan Ji, Zhaoqing Kang, Suojiang Zhang
    Abstract:

    Abstract In this work, the cellulose phase separation behavior was investigated by using ionic liquids (ILs) as novel solvents to acquire a green process for cellulose fiber spinning. The cloud point titration method combined with the turbidity correlation equation was used to obtain the Ternary Diagram of IL/cellulose/coagulator throughout the whole compositional range. The effects of the type of ILs, the cellulose materials, the kind of coagulators and the regeneration temperatures for cellulose fiber manufacturing process on the phase separation behavior were studied systematically. It was found that the linearized cloud point (LCP) curve correlation fits to experimental data well and can be used to quantify the optimized coagulator, and among the studied cases, the system of [EMIM]DEP, cotton pulp and water with the regeneration temperature at 298.15 K is the best. Meanwhile, COSMO-RS was used to predict the interaction between solvent, cellulose and coagulator, and the comparison with the LCP correlation shows good agreement. The crystal structure of the regenerated cotton pulp was determined with XRD, and the result evidences that the crystal structure of the regenerated cellulose transforms from cellulose I to cellulose II. The crystallinity decreases from 96.0% (raw cotton pulp) to 85.6% after 24 h dissolution in [EMIM]DEP at 363.15 K, and it has a slight deviation from 24 h to 72 h, which illustrates that the spinning process can run continuously at 363.15 K when using [EMIM]DEP as the solvent.

  • Study on ionic liquid/cellulose/coagulator phase Diagram and its application in green spinning process
    2019
    Co-Authors: Liu Yanrong, Yi Nie, Ji Xiaoyan, Le Zhou, Pan Fengjiao, Kang Zhaoqing, Zhang Suojiang
    Abstract:

    In this work, the cellulose phase separation behavior was investigated by using ionic liquids (ILs) as novel solvents to acquire a green process for cellulose fiber spinning. The cloud point titration method combined with the turbidity correlation equation was used to obtain the Ternary Diagram of IL/cellulose/coagulator throughout the whole compositional range. The effects of the type of ILs, the cellulose materials, the kind of coagulators and the regeneration temperatures for cellulose fiber manufacturing process on the phase separation behavior were studied systematically. It was found that the linearized cloud point (LCP) curve correlation fits to experimental data well and can be used to quantify the optimized coagulator, and among the studied cases, the system of [EMIM]DEP, cotton pulp and water with the regeneration temperature at 298.15 K is the best. Meanwhile, COSMO-RS was used to predict the interaction between solvent, cellulose and coagulator, and the comparison with the LCP correlation shows good agreement. The crystal structure of the regenerated cotton pulp was determined with XRD, and the result evidences that the crystal structure of the regenerated cellulose transforms from cellulose I to cellulose II. The crystallinity decreases from 96.0% (raw cotton pulp) to 85.6% after 24 h dissolution in [EMIM]DEP at 363.15 K, and it has a slight deviation from 24 h to 72 h, which illustrates that the spinning process can run continuously at 363.15 K when using [EMIM]DEP as the solvent.Validerad;2019;Nivå 2;2019-06-27 (johcin)

  • Study on ionic liquid/cellulose/coagulator phase Diagram and its application in green spinning process
    'Elsevier BV', 2019
    Co-Authors: Liu Yanrong, Yi Nie, Ji Xiaoyan, Le Zhou, Pan Fengjiao, Kang Zhaoqing, Zhang Suojiang
    Abstract:

    In this work, the cellulose phase separation behavior was investigated by using ionic liquids (ILs) as novel solvents to acquire a green process for cellulose fiber spinning. The cloud point titration method combined with the turbidity correlation equation was used to obtain the Ternary Diagram of IL/cellulose/coagulator throughout the whole compositional range. The effects of the type of ILs, the cellulose materials, the kind of coagulators and the regeneration temperatures for cellulose fiber manufacturing process on the phase separation behavior were studied systematically. It was found that the linearized cloud point (LCP) curve correlation fits to experimental data well and can be used to quantify the optimized coagulator, and among the studied cases, the system of [EMIM]DEP, cotton pulp and water with the regeneration temperature at 298.15 K is the best. Meanwhile, COSMO-RS was used to predict the interaction between solvent, cellulose and coagulator, and the comparison with the LCP correlation shows good agreement. The crystal structure of the regenerated cotton pulp was determined with XRD, and the result evidences that the crystal structure of the regenerated cellulose transforms from cellulose I to cellulose II. The crystallinity decreases from 96.0% (raw cotton pulp) to 85.6% after 24 h dissolution in [EMIM]DEP at 363.15 K, and it has a slight deviation from 24 h to 72 h, which illustrates that the spinning process can run continuously at 363.15 K when using [EMIM]DEP as the solvent. (C) 2019 Published by Elsevier B.V

R Van Kaam - One of the best experts on this subject based on the ideXlab platform.

  • heterogeneous extractive batch distillation of chloroform methanol water feasibility and experiments
    Chemical Engineering Science, 2008
    Co-Authors: R Van Kaam, Ivonne Rodriguezdonis, Vincent Gerbaud
    Abstract:

    Abstract A novel heterogeneous extractive distillation process is considered for separating the azeotropic mixture chloroform–methanol in a batch rectifying column, including for the first time an experimental validation of the process. Heterogeneous heavy entrainer water is selected inducing an unstable Ternary heteroazeotrope and a saddle binary heteroazeotrope with chloroform (Ternary Diagram class 2.1-2b). Unlike the well-known heterogeneous azeotropic distillation process and thanks to continuous water feeding at the column top, the saddle binary heteroazeotrope chloroform–water is obtained at the column top, condensed and further split into the liquid–liquid decanter where the chloroform-rich phase is drawn as distillate. First, feasibility analysis is carried out by using a simplified differential model in the extractive section for determining the proper range of the entrainer flowrate and the reflux ratio. The operating conditions and reflux policy are validated by rigorous simulation with ProSim Batch Column ® where technical features of a bench scale distillation column have been described. Six reproducible experiments are run in the bench scale column matching the simulated operating conditions with two sequentially increasing reflux ratio values. Simulation and experiments agree well. With an average molar purity higher than 99%, more than 85% of recovery yield was obtained for chloroform and methanol.

  • Heterogeneous Extractive Batch Distillation of Chloroform - Methanol – Water : Feasibility and Experiments
    Chemical Engineering Science, 2008
    Co-Authors: R Van Kaam, Ivonne Rodriguez-donis, Vincent Gerbaud
    Abstract:

    A novel heterogeneous extractive distillation process is considered for separating the azeotropic mixture chloroform – methanol in a batch rectifying column, including for the first time an experimental validation of the process. Heterogeneous heavy entrainer water is selected inducing an unstable Ternary heteroazeotrope and a saddle binary heteroazeotrope with chloroform (Ternary Diagram class 2.1-2b). Unlike to well-known heterogeneous azeotropic distillation process and thanks to continuous water feeding at the column top, the saddle binary heteroazeotrope chloroform – water is obtained at the column top, condensed and further split into the liquid – liquid decanter where the chloroform-rich phase is drawn as distillate. First, feasibility analysis is carried out by using a simplified differential model in the extractive section for determining the proper range of the entrainer flowrate and the reflux ratio. The operating conditions and reflux policy are validated by rigorous simulation with ProSim Batch Column® where technical features of a bench scale distillation column have been described. Six reproducible experiments are run in the bench scale column matching the simulated operating conditions with two sequentially increasing reflux ratio values. Simulation and experiments agree well. With an average molar purity higher than 99%, more than 85% of recovery yield was obtained for chloroform and methanol.

Karl Lorber - One of the best experts on this subject based on the ideXlab platform.

  • dynamic visualisation of municipal waste management performance in the eu using Ternary Diagram method
    Waste Management, 2017
    Co-Authors: Roland Pomberger, Renato Sarc, Karl Lorber
    Abstract:

    Abstract This contribution describes the dynamic visualisation of European (EU 28) municipal waste management performance, using the Ternary Diagram Method. Municipal waste management performance depends primarily on three treatment categories: recycling & composting, incineration and landfilling. The framework of current municipal waste management including recycling targets, etc. is given by the Waste Framework Directive – 2008/98/EC. The proposed Circular Economy Package should stimulate Europe's transition towards more sustainable resources and energy oriented waste management. The Package also includes a revised legislative proposal on waste that sets ambitious recycling rates for municipal waste for 2025 (60%) and 2030 (65%). Additionally, the new calculation method for monitoring the attainment of the targets should be applied. In 2014, ca. 240 million tonnes of municipal waste were generated in the EU. While in 1995, 17% were recycled and composted, 14% incinerated and 64% landfilled, in 2014 ca. 71% were recovered but 28% landfilled only. Considering the treatment performance of the individual EU member states, the EU 28 can be divided into three groups, namely: “Recovery Countries”, “Transition Countries” and “Landfilling Countries”. Using Ternary Diagram Method, three types of visualization for the municipal waste management performance have been investigated and extensively described. Therefore, for better understanding of municipal waste management performance in the last 20 years, dynamic visualisation of the Eurostat table-form data on all 28 member states of the EU has been carried out in three different ways: 1. “Performance Positioning” of waste management unit(s) at a specific date; 2. “Performance dynamics” over a certain time period and; 3. “Performance development” expressed as a track(s). Results obtained show that the Ternary Diagram Method is very well suited to be used for better understanding of past developments and coherences, for monitoring of current situations and prognosis of future paths. One of the interesting coherences shown by the method is the linked development of recycling & composting (60–65%) with incineration (40–35%) performance over the last 20 years in the EU 28.