Theoretical Point

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 297 Experts worldwide ranked by ideXlab platform

Alain Nitenberg - One of the best experts on this subject based on the ideXlab platform.

  • Towards New Indices of Arterial Stiffness Using Systolic Pulse Contour Analysis: A Theoretical Point of View
    Journal of Cardiovascular Pharmacology, 2008
    Co-Authors: Denis Chemla, Karsten Plamann, Alain Nitenberg
    Abstract:

    Total arterial stiffness plays a contributory role throughout aging and in numerous cardiovascular diseases, including hypertension. Aortic stiffening is responsible for an increased characteristic impedance (ie, the impedance to the left ventricular pulsatile flow), thus increasing the forward pressure-wave amplitude that contributes to pulse pressure elevation. Aortic stiffening also increases pulse wave velocity, and this results in anticipated and enhanced wave reflections, further augmenting central pulse pressure. Unfortunately, there is no simple time-domain estimate of characteristic impedance. Furthermore, recent guidelines have reviewed the limitations of diastolic pulse contour analysis to estimate arterial stiffness in the time domain. The present Theoretical article proposes that systolic pulse contour analysis may provide new, simple time-domain indices quantifying pulsatile load in resting humans. Our proposal was mainly based on 2 simple, validated assumptions: (1) a linear aortic pressure-flow relationship in early systole and (2) a triangular aortic flow wave during systole. This allowed us to describe new time-domain estimates of characteristic impedance, pulsatile load (waveguide ratio), total arterial compliance, and total arterial stiffness. It is demonstrated that total arterial stiffness may be estimated by the following formula: [(Pi - DAP) × ST] / (SV × Δt), where Pi is the aortic pressure at the inflection Point (peak forward pressure wave), DAP is diastolic aortic pressure, ST is systolic ejection time, SV is stroke volume, and Δt is the time-to-Pi. A mathematical relationship among time intervals and indices of pulsatile load is demonstrated, and the clinical implications are discussed in terms of cardiovascular risk and stroke volume prediction.

  • Towards new indices of arterial stiffness using systolic pulse contour analysis: a Theoretical Point of view.
    Journal of cardiovascular pharmacology, 2008
    Co-Authors: Denis Chemla, Karsten Plamann, Alain Nitenberg
    Abstract:

    Total arterial stiffness plays a contributory role throughout aging and in numerous cardiovascular diseases, including hypertension. Aortic stiffening is responsible for an increased characteristic impedance (ie, the impedance to the left ventricular pulsatile flow), thus increasing the forward pressure-wave amplitude that contributes to pulse pressure elevation. Aortic stiffening also increases pulse wave velocity, and this results in anticipated and enhanced wave reflections, further augmenting central pulse pressure. Unfortunately, there is no simple time-domain estimate of characteristic impedance. Furthermore, recent guidelines have reviewed the limitations of diastolic pulse contour analysis to estimate arterial stiffness in the time domain. The present Theoretical article proposes that systolic pulse contour analysis may provide new, simple time-domain indices quantifying pulsatile load in resting humans. Our proposal was mainly based on 2 simple, validated assumptions: (1) a linear aortic pressure-flow relationship in early systole and (2) a triangular aortic flow wave during systole. This allowed us to describe new time-domain estimates of characteristic impedance, pulsatile load (waveguide ratio), total arterial compliance, and total arterial stiffness. It is demonstrated that total arterial stiffness may be estimated by the following formula: [(Pi - DAP) x ST] / (SV x Deltat), where Pi is the aortic pressure at the inflection Point (peak forward pressure wave), DAP is diastolic aortic pressure, ST is systolic ejection time, SV is stroke volume, and Deltat is the time-to-Pi. A mathematical relationship among time intervals and indices of pulsatile load is demonstrated, and the clinical implications are discussed in terms of cardiovascular risk and stroke volume prediction.

Denis Chemla - One of the best experts on this subject based on the ideXlab platform.

  • Towards New Indices of Arterial Stiffness Using Systolic Pulse Contour Analysis: A Theoretical Point of View
    Journal of Cardiovascular Pharmacology, 2008
    Co-Authors: Denis Chemla, Karsten Plamann, Alain Nitenberg
    Abstract:

    Total arterial stiffness plays a contributory role throughout aging and in numerous cardiovascular diseases, including hypertension. Aortic stiffening is responsible for an increased characteristic impedance (ie, the impedance to the left ventricular pulsatile flow), thus increasing the forward pressure-wave amplitude that contributes to pulse pressure elevation. Aortic stiffening also increases pulse wave velocity, and this results in anticipated and enhanced wave reflections, further augmenting central pulse pressure. Unfortunately, there is no simple time-domain estimate of characteristic impedance. Furthermore, recent guidelines have reviewed the limitations of diastolic pulse contour analysis to estimate arterial stiffness in the time domain. The present Theoretical article proposes that systolic pulse contour analysis may provide new, simple time-domain indices quantifying pulsatile load in resting humans. Our proposal was mainly based on 2 simple, validated assumptions: (1) a linear aortic pressure-flow relationship in early systole and (2) a triangular aortic flow wave during systole. This allowed us to describe new time-domain estimates of characteristic impedance, pulsatile load (waveguide ratio), total arterial compliance, and total arterial stiffness. It is demonstrated that total arterial stiffness may be estimated by the following formula: [(Pi - DAP) × ST] / (SV × Δt), where Pi is the aortic pressure at the inflection Point (peak forward pressure wave), DAP is diastolic aortic pressure, ST is systolic ejection time, SV is stroke volume, and Δt is the time-to-Pi. A mathematical relationship among time intervals and indices of pulsatile load is demonstrated, and the clinical implications are discussed in terms of cardiovascular risk and stroke volume prediction.

  • Towards new indices of arterial stiffness using systolic pulse contour analysis: a Theoretical Point of view.
    Journal of cardiovascular pharmacology, 2008
    Co-Authors: Denis Chemla, Karsten Plamann, Alain Nitenberg
    Abstract:

    Total arterial stiffness plays a contributory role throughout aging and in numerous cardiovascular diseases, including hypertension. Aortic stiffening is responsible for an increased characteristic impedance (ie, the impedance to the left ventricular pulsatile flow), thus increasing the forward pressure-wave amplitude that contributes to pulse pressure elevation. Aortic stiffening also increases pulse wave velocity, and this results in anticipated and enhanced wave reflections, further augmenting central pulse pressure. Unfortunately, there is no simple time-domain estimate of characteristic impedance. Furthermore, recent guidelines have reviewed the limitations of diastolic pulse contour analysis to estimate arterial stiffness in the time domain. The present Theoretical article proposes that systolic pulse contour analysis may provide new, simple time-domain indices quantifying pulsatile load in resting humans. Our proposal was mainly based on 2 simple, validated assumptions: (1) a linear aortic pressure-flow relationship in early systole and (2) a triangular aortic flow wave during systole. This allowed us to describe new time-domain estimates of characteristic impedance, pulsatile load (waveguide ratio), total arterial compliance, and total arterial stiffness. It is demonstrated that total arterial stiffness may be estimated by the following formula: [(Pi - DAP) x ST] / (SV x Deltat), where Pi is the aortic pressure at the inflection Point (peak forward pressure wave), DAP is diastolic aortic pressure, ST is systolic ejection time, SV is stroke volume, and Deltat is the time-to-Pi. A mathematical relationship among time intervals and indices of pulsatile load is demonstrated, and the clinical implications are discussed in terms of cardiovascular risk and stroke volume prediction.

Karsten Plamann - One of the best experts on this subject based on the ideXlab platform.

  • Towards New Indices of Arterial Stiffness Using Systolic Pulse Contour Analysis: A Theoretical Point of View
    Journal of Cardiovascular Pharmacology, 2008
    Co-Authors: Denis Chemla, Karsten Plamann, Alain Nitenberg
    Abstract:

    Total arterial stiffness plays a contributory role throughout aging and in numerous cardiovascular diseases, including hypertension. Aortic stiffening is responsible for an increased characteristic impedance (ie, the impedance to the left ventricular pulsatile flow), thus increasing the forward pressure-wave amplitude that contributes to pulse pressure elevation. Aortic stiffening also increases pulse wave velocity, and this results in anticipated and enhanced wave reflections, further augmenting central pulse pressure. Unfortunately, there is no simple time-domain estimate of characteristic impedance. Furthermore, recent guidelines have reviewed the limitations of diastolic pulse contour analysis to estimate arterial stiffness in the time domain. The present Theoretical article proposes that systolic pulse contour analysis may provide new, simple time-domain indices quantifying pulsatile load in resting humans. Our proposal was mainly based on 2 simple, validated assumptions: (1) a linear aortic pressure-flow relationship in early systole and (2) a triangular aortic flow wave during systole. This allowed us to describe new time-domain estimates of characteristic impedance, pulsatile load (waveguide ratio), total arterial compliance, and total arterial stiffness. It is demonstrated that total arterial stiffness may be estimated by the following formula: [(Pi - DAP) × ST] / (SV × Δt), where Pi is the aortic pressure at the inflection Point (peak forward pressure wave), DAP is diastolic aortic pressure, ST is systolic ejection time, SV is stroke volume, and Δt is the time-to-Pi. A mathematical relationship among time intervals and indices of pulsatile load is demonstrated, and the clinical implications are discussed in terms of cardiovascular risk and stroke volume prediction.

  • Towards new indices of arterial stiffness using systolic pulse contour analysis: a Theoretical Point of view.
    Journal of cardiovascular pharmacology, 2008
    Co-Authors: Denis Chemla, Karsten Plamann, Alain Nitenberg
    Abstract:

    Total arterial stiffness plays a contributory role throughout aging and in numerous cardiovascular diseases, including hypertension. Aortic stiffening is responsible for an increased characteristic impedance (ie, the impedance to the left ventricular pulsatile flow), thus increasing the forward pressure-wave amplitude that contributes to pulse pressure elevation. Aortic stiffening also increases pulse wave velocity, and this results in anticipated and enhanced wave reflections, further augmenting central pulse pressure. Unfortunately, there is no simple time-domain estimate of characteristic impedance. Furthermore, recent guidelines have reviewed the limitations of diastolic pulse contour analysis to estimate arterial stiffness in the time domain. The present Theoretical article proposes that systolic pulse contour analysis may provide new, simple time-domain indices quantifying pulsatile load in resting humans. Our proposal was mainly based on 2 simple, validated assumptions: (1) a linear aortic pressure-flow relationship in early systole and (2) a triangular aortic flow wave during systole. This allowed us to describe new time-domain estimates of characteristic impedance, pulsatile load (waveguide ratio), total arterial compliance, and total arterial stiffness. It is demonstrated that total arterial stiffness may be estimated by the following formula: [(Pi - DAP) x ST] / (SV x Deltat), where Pi is the aortic pressure at the inflection Point (peak forward pressure wave), DAP is diastolic aortic pressure, ST is systolic ejection time, SV is stroke volume, and Deltat is the time-to-Pi. A mathematical relationship among time intervals and indices of pulsatile load is demonstrated, and the clinical implications are discussed in terms of cardiovascular risk and stroke volume prediction.

Emilia Sicilia - One of the best experts on this subject based on the ideXlab platform.

  • Reaction of bare VO+ and FeO+ with ammonia: a Theoretical Point of view.
    Inorganic chemistry, 2003
    Co-Authors: Sandro Chiodo, O. A. Kondakova, Maria Del Carmen Michelini, And Nino Russo, Emilia Sicilia
    Abstract:

    The potential energy surfaces corresponding to the dehydration reaction of NH3 by VO+ (3Σ, 1Δ, 5Σ) and FeO+ (6Σ, 4Δ) metal oxide cations have been investigated within the framework of the density functional theory in its B3LYP formulation and by employing new optimized basis sets for iron and vanadium. The reaction is proposed to occur through two hydrogen shifts from the nitrogen to the oxygen atom giving rise to multicentered transition states. Possible spin crossing between surfaces at different spin multiplicities has been considered. The energy profiles are compared with the corresponding ones for the insertion of bare cations to investigate the influence on reactivity of the presence of the oxygen ligand. The topological analysis of the gradient field of the electron localization function has been used to characterize the nature of the bonds for all the minima and transition states along the paths.

  • reaction of bare vo and feo with ammonia a Theoretical Point of view
    Inorganic Chemistry, 2003
    Co-Authors: Sandro Chiodo, O. A. Kondakova, Maria Del Carmen Michelini, And Nino Russo, Emilia Sicilia
    Abstract:

    The potential energy surfaces corresponding to the dehydration reaction of NH3 by VO+ (3Σ, 1Δ, 5Σ) and FeO+ (6Σ, 4Δ) metal oxide cations have been investigated within the framework of the density functional theory in its B3LYP formulation and by employing new optimized basis sets for iron and vanadium. The reaction is proposed to occur through two hydrogen shifts from the nitrogen to the oxygen atom giving rise to multicentered transition states. Possible spin crossing between surfaces at different spin multiplicities has been considered. The energy profiles are compared with the corresponding ones for the insertion of bare cations to investigate the influence on reactivity of the presence of the oxygen ligand. The topological analysis of the gradient field of the electron localization function has been used to characterize the nature of the bonds for all the minima and transition states along the paths.

Sandro Chiodo - One of the best experts on this subject based on the ideXlab platform.

  • Reaction of bare VO+ and FeO+ with ammonia: a Theoretical Point of view.
    Inorganic chemistry, 2003
    Co-Authors: Sandro Chiodo, O. A. Kondakova, Maria Del Carmen Michelini, And Nino Russo, Emilia Sicilia
    Abstract:

    The potential energy surfaces corresponding to the dehydration reaction of NH3 by VO+ (3Σ, 1Δ, 5Σ) and FeO+ (6Σ, 4Δ) metal oxide cations have been investigated within the framework of the density functional theory in its B3LYP formulation and by employing new optimized basis sets for iron and vanadium. The reaction is proposed to occur through two hydrogen shifts from the nitrogen to the oxygen atom giving rise to multicentered transition states. Possible spin crossing between surfaces at different spin multiplicities has been considered. The energy profiles are compared with the corresponding ones for the insertion of bare cations to investigate the influence on reactivity of the presence of the oxygen ligand. The topological analysis of the gradient field of the electron localization function has been used to characterize the nature of the bonds for all the minima and transition states along the paths.

  • reaction of bare vo and feo with ammonia a Theoretical Point of view
    Inorganic Chemistry, 2003
    Co-Authors: Sandro Chiodo, O. A. Kondakova, Maria Del Carmen Michelini, And Nino Russo, Emilia Sicilia
    Abstract:

    The potential energy surfaces corresponding to the dehydration reaction of NH3 by VO+ (3Σ, 1Δ, 5Σ) and FeO+ (6Σ, 4Δ) metal oxide cations have been investigated within the framework of the density functional theory in its B3LYP formulation and by employing new optimized basis sets for iron and vanadium. The reaction is proposed to occur through two hydrogen shifts from the nitrogen to the oxygen atom giving rise to multicentered transition states. Possible spin crossing between surfaces at different spin multiplicities has been considered. The energy profiles are compared with the corresponding ones for the insertion of bare cations to investigate the influence on reactivity of the presence of the oxygen ligand. The topological analysis of the gradient field of the electron localization function has been used to characterize the nature of the bonds for all the minima and transition states along the paths.