Thermomechanical Property

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 84 Experts worldwide ranked by ideXlab platform

In Woo Cheong - One of the best experts on this subject based on the ideXlab platform.

  • enhanced Thermomechanical Property of a self healing polymer via self assembly of a reversibly cross linkable block copolymer
    Polymer Chemistry, 2020
    Co-Authors: Hyang Moo Lee, Suguna Perumal, Gi Young Kim, Jin Chul Kim, Young-ryul Kim, Minsoo P. Kim, Yecheol Rho, In Woo Cheong
    Abstract:

    We report the preparation and Thermomechanical properties of hetero-nanostructured self-healing polymers (HSPs) bearing a hindered urea bond (HUB) by varying the content of a self-healable block copolymer (BCP). The micellar morphology of the BCP blend in a matrix polymer was studied using transmission electron microscopy and grazing-incidence small-angle X-ray scattering with various organic solvent types and BCP contents. The self-healing efficiency of the HSPs was obtained from single-scratch tests through optical microscopy and atomic force microscopy. To confirm self-healing at the molecular level, the mechanical properties of the cross-cut and healed HSPs were also analyzed using a universal testing machine. Thermomechanical properties associated with HUB were measured by dynamic mechanical analysis and temperature-oscillating rheometry. The results showed that blending the BCP improved the toughness, the hardness, and the modulus up to 21.7, 25.3, and 24.8%, respectively. Moreover, at high temperatures, the temperature range of the rubbery plateau was greatly widened without a noticeable decrease in the self-healing capability.

  • Correction: Enhanced Thermomechanical Property of a self-healing polymer via self-assembly of a reversibly cross-linkable block copolymer
    Polymer Chemistry, 2020
    Co-Authors: Hyang Moo Lee, Suguna Perumal, Gi Young Kim, Jin Chul Kim, Young-ryul Kim, Minsoo P. Kim, Yecheol Rho, In Woo Cheong
    Abstract:

    Correction for ‘Enhanced Thermomechanical Property of a self-healing polymer via self-assembly of a reversibly cross-linkable block copolymer’ by Hyang Moo Lee et al., Polym. Chem., 2020, DOI: 10.1039/d0py00310g.

Hyang Moo Lee - One of the best experts on this subject based on the ideXlab platform.

  • enhanced Thermomechanical Property of a self healing polymer via self assembly of a reversibly cross linkable block copolymer
    Polymer Chemistry, 2020
    Co-Authors: Hyang Moo Lee, Suguna Perumal, Gi Young Kim, Jin Chul Kim, Young-ryul Kim, Minsoo P. Kim, Yecheol Rho, In Woo Cheong
    Abstract:

    We report the preparation and Thermomechanical properties of hetero-nanostructured self-healing polymers (HSPs) bearing a hindered urea bond (HUB) by varying the content of a self-healable block copolymer (BCP). The micellar morphology of the BCP blend in a matrix polymer was studied using transmission electron microscopy and grazing-incidence small-angle X-ray scattering with various organic solvent types and BCP contents. The self-healing efficiency of the HSPs was obtained from single-scratch tests through optical microscopy and atomic force microscopy. To confirm self-healing at the molecular level, the mechanical properties of the cross-cut and healed HSPs were also analyzed using a universal testing machine. Thermomechanical properties associated with HUB were measured by dynamic mechanical analysis and temperature-oscillating rheometry. The results showed that blending the BCP improved the toughness, the hardness, and the modulus up to 21.7, 25.3, and 24.8%, respectively. Moreover, at high temperatures, the temperature range of the rubbery plateau was greatly widened without a noticeable decrease in the self-healing capability.

  • Correction: Enhanced Thermomechanical Property of a self-healing polymer via self-assembly of a reversibly cross-linkable block copolymer
    Polymer Chemistry, 2020
    Co-Authors: Hyang Moo Lee, Suguna Perumal, Gi Young Kim, Jin Chul Kim, Young-ryul Kim, Minsoo P. Kim, Yecheol Rho, In Woo Cheong
    Abstract:

    Correction for ‘Enhanced Thermomechanical Property of a self-healing polymer via self-assembly of a reversibly cross-linkable block copolymer’ by Hyang Moo Lee et al., Polym. Chem., 2020, DOI: 10.1039/d0py00310g.

Gi Young Kim - One of the best experts on this subject based on the ideXlab platform.

  • enhanced Thermomechanical Property of a self healing polymer via self assembly of a reversibly cross linkable block copolymer
    Polymer Chemistry, 2020
    Co-Authors: Hyang Moo Lee, Suguna Perumal, Gi Young Kim, Jin Chul Kim, Young-ryul Kim, Minsoo P. Kim, Yecheol Rho, In Woo Cheong
    Abstract:

    We report the preparation and Thermomechanical properties of hetero-nanostructured self-healing polymers (HSPs) bearing a hindered urea bond (HUB) by varying the content of a self-healable block copolymer (BCP). The micellar morphology of the BCP blend in a matrix polymer was studied using transmission electron microscopy and grazing-incidence small-angle X-ray scattering with various organic solvent types and BCP contents. The self-healing efficiency of the HSPs was obtained from single-scratch tests through optical microscopy and atomic force microscopy. To confirm self-healing at the molecular level, the mechanical properties of the cross-cut and healed HSPs were also analyzed using a universal testing machine. Thermomechanical properties associated with HUB were measured by dynamic mechanical analysis and temperature-oscillating rheometry. The results showed that blending the BCP improved the toughness, the hardness, and the modulus up to 21.7, 25.3, and 24.8%, respectively. Moreover, at high temperatures, the temperature range of the rubbery plateau was greatly widened without a noticeable decrease in the self-healing capability.

  • Correction: Enhanced Thermomechanical Property of a self-healing polymer via self-assembly of a reversibly cross-linkable block copolymer
    Polymer Chemistry, 2020
    Co-Authors: Hyang Moo Lee, Suguna Perumal, Gi Young Kim, Jin Chul Kim, Young-ryul Kim, Minsoo P. Kim, Yecheol Rho, In Woo Cheong
    Abstract:

    Correction for ‘Enhanced Thermomechanical Property of a self-healing polymer via self-assembly of a reversibly cross-linkable block copolymer’ by Hyang Moo Lee et al., Polym. Chem., 2020, DOI: 10.1039/d0py00310g.

Jin Chul Kim - One of the best experts on this subject based on the ideXlab platform.

  • enhanced Thermomechanical Property of a self healing polymer via self assembly of a reversibly cross linkable block copolymer
    Polymer Chemistry, 2020
    Co-Authors: Hyang Moo Lee, Suguna Perumal, Gi Young Kim, Jin Chul Kim, Young-ryul Kim, Minsoo P. Kim, Yecheol Rho, In Woo Cheong
    Abstract:

    We report the preparation and Thermomechanical properties of hetero-nanostructured self-healing polymers (HSPs) bearing a hindered urea bond (HUB) by varying the content of a self-healable block copolymer (BCP). The micellar morphology of the BCP blend in a matrix polymer was studied using transmission electron microscopy and grazing-incidence small-angle X-ray scattering with various organic solvent types and BCP contents. The self-healing efficiency of the HSPs was obtained from single-scratch tests through optical microscopy and atomic force microscopy. To confirm self-healing at the molecular level, the mechanical properties of the cross-cut and healed HSPs were also analyzed using a universal testing machine. Thermomechanical properties associated with HUB were measured by dynamic mechanical analysis and temperature-oscillating rheometry. The results showed that blending the BCP improved the toughness, the hardness, and the modulus up to 21.7, 25.3, and 24.8%, respectively. Moreover, at high temperatures, the temperature range of the rubbery plateau was greatly widened without a noticeable decrease in the self-healing capability.

  • Correction: Enhanced Thermomechanical Property of a self-healing polymer via self-assembly of a reversibly cross-linkable block copolymer
    Polymer Chemistry, 2020
    Co-Authors: Hyang Moo Lee, Suguna Perumal, Gi Young Kim, Jin Chul Kim, Young-ryul Kim, Minsoo P. Kim, Yecheol Rho, In Woo Cheong
    Abstract:

    Correction for ‘Enhanced Thermomechanical Property of a self-healing polymer via self-assembly of a reversibly cross-linkable block copolymer’ by Hyang Moo Lee et al., Polym. Chem., 2020, DOI: 10.1039/d0py00310g.

Young-ryul Kim - One of the best experts on this subject based on the ideXlab platform.

  • enhanced Thermomechanical Property of a self healing polymer via self assembly of a reversibly cross linkable block copolymer
    Polymer Chemistry, 2020
    Co-Authors: Hyang Moo Lee, Suguna Perumal, Gi Young Kim, Jin Chul Kim, Young-ryul Kim, Minsoo P. Kim, Yecheol Rho, In Woo Cheong
    Abstract:

    We report the preparation and Thermomechanical properties of hetero-nanostructured self-healing polymers (HSPs) bearing a hindered urea bond (HUB) by varying the content of a self-healable block copolymer (BCP). The micellar morphology of the BCP blend in a matrix polymer was studied using transmission electron microscopy and grazing-incidence small-angle X-ray scattering with various organic solvent types and BCP contents. The self-healing efficiency of the HSPs was obtained from single-scratch tests through optical microscopy and atomic force microscopy. To confirm self-healing at the molecular level, the mechanical properties of the cross-cut and healed HSPs were also analyzed using a universal testing machine. Thermomechanical properties associated with HUB were measured by dynamic mechanical analysis and temperature-oscillating rheometry. The results showed that blending the BCP improved the toughness, the hardness, and the modulus up to 21.7, 25.3, and 24.8%, respectively. Moreover, at high temperatures, the temperature range of the rubbery plateau was greatly widened without a noticeable decrease in the self-healing capability.

  • Correction: Enhanced Thermomechanical Property of a self-healing polymer via self-assembly of a reversibly cross-linkable block copolymer
    Polymer Chemistry, 2020
    Co-Authors: Hyang Moo Lee, Suguna Perumal, Gi Young Kim, Jin Chul Kim, Young-ryul Kim, Minsoo P. Kim, Yecheol Rho, In Woo Cheong
    Abstract:

    Correction for ‘Enhanced Thermomechanical Property of a self-healing polymer via self-assembly of a reversibly cross-linkable block copolymer’ by Hyang Moo Lee et al., Polym. Chem., 2020, DOI: 10.1039/d0py00310g.