Through-Bond Interaction

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 1212279 Experts worldwide ranked by ideXlab platform

Mariana Vignoni - One of the best experts on this subject based on the ideXlab platform.

  • alkane chain extended pterin through a pendent carboxylic acid acts as triple functioning fluorophore 1o2 sensitizer and membrane binder
    Photochemistry and Photobiology, 2019
    Co-Authors: Niluksha Walalawela, María Noel Urrutia, Andrés H. Thomas, Alexander Greer, Mariana Vignoni
    Abstract:

    In order to develop a new long alkane chain pterin that leaves the pterin core largely unperturbed, we synthesized and photochemically characterized decyl pterin-6-carboxyl ester (CapC) that preserves the pterin amide group. CapC contains a decyl-chain at the carboxylic acid position and a condensed DMF molecule at the N2 position. Occupation of the long alkane chain on the pendent carboxylic acid group retains the acid-base equilibrium of the pterin headgroup due to its somewhat remote location. This new CapC compound has relatively high fluorescence emission and singlet oxygen quantum yields attributed to the lack of Through-Bond Interaction between the long alkane chain and the pterin headgroup. The calculated lipophilicity is higher for CapC compared to parent pterin and pterin-6-carboxylic acid (Cap) and comparable to previously reported O- and N-decyl-pterin derivatives. CapC's binding constant Kb (8000 M-1 in L-α-phosphatidylcholine from egg yolk) and ΦF :Φ∆ ratio (0.26:0.40) point to a unique triple function compound, although the hydrolytic stability of CapC is modest due to its ester conjugation. CapC is capable of the general triple action not only as a membrane intercalator, but also fluorophore and 1 O2 sensitizer, leading to a "self-monitoring" membrane fluorescent probe and a membrane photodamaging agent.

Li Yang - One of the best experts on this subject based on the ideXlab platform.

  • tensile strain switched ferromagnetism in layered nbs2 and nbse2
    ACS Nano, 2012
    Co-Authors: Yungang Zhou, Zhiguo Wang, Ping Yang, Xiaotao Zu, Li Yang
    Abstract:

    Developing approaches to effectively induce and control the magnetic states is critical to the use of magnetic nanostructures in quantum information devices but is still challenging. Here we have demonstrated, by employing the density functional theory calculations, the existence of infinite magnetic sheets with structural integrity and magnetic homogeneity. Examination of a series of transition metal dichalcogenides shows that the biaxial tensile strained NbS2 and NbSe2 structures can be magnetized with a ferromagnetic character due to the competitive effects of Through-Bond Interaction and through-space Interaction. The estimated Curie temperatures (387 and 542 K under the 10% strain for NbS2 and NbSe2 structures, respectively) suggest that the unique ferromagnetic character can be achieved above room temperature. The self-exchange of population between 4d orbitals of the Nb atom that leads to exchange splitting is the mechanism behind the transition of the spin moment. The induced magnetic moments can ...

  • tensile strain switched ferromagnetism in layered nbs2 and nbse2
    ACS Nano, 2012
    Co-Authors: Yungang Zhou, Zhiguo Wang, Ping Yang, Li Yang, Xin Sun, Fei Gao
    Abstract:

    Developing approaches to effectively induce and control the magnetic states is critical to the use of magnetic nanostructures in quantum information devices but is still challenging. Here we have demonstrated, by employing the density functional theory calculations, the existence of infinite magnetic sheets with structural integrity and magnetic homogeneity. Examination of a series of transition metal dichalcogenides shows that the biaxial tensile strained NbS(2) and NbSe(2) structures can be magnetized with a ferromagnetic character due to the competitive effects of Through-Bond Interaction and through-space Interaction. The estimated Curie temperatures (387 and 542 K under the 10% strain for NbS(2) and NbSe(2) structures, respectively) suggest that the unique ferromagnetic character can be achieved above room temperature. The self-exchange of population between 4d orbitals of the Nb atom that leads to exchange splitting is the mechanism behind the transition of the spin moment. The induced magnetic moments can be significantly enhanced by the tensile strain, even giving rise to a half-metallic character with a strong spin polarization around the Fermi level. Given the recent progress in achieving the desired strain on two-dimensional nanostructures, such as graphene and a BN layer, in a controlled way, we believe that our calculated results are suitable for experimental verification and implementation, opening a new path to explore the spintronics in pristine two-dimensional nanostructures.

Niluksha Walalawela - One of the best experts on this subject based on the ideXlab platform.

  • alkane chain extended pterin through a pendent carboxylic acid acts as triple functioning fluorophore 1o2 sensitizer and membrane binder
    Photochemistry and Photobiology, 2019
    Co-Authors: Niluksha Walalawela, María Noel Urrutia, Andrés H. Thomas, Alexander Greer, Mariana Vignoni
    Abstract:

    In order to develop a new long alkane chain pterin that leaves the pterin core largely unperturbed, we synthesized and photochemically characterized decyl pterin-6-carboxyl ester (CapC) that preserves the pterin amide group. CapC contains a decyl-chain at the carboxylic acid position and a condensed DMF molecule at the N2 position. Occupation of the long alkane chain on the pendent carboxylic acid group retains the acid-base equilibrium of the pterin headgroup due to its somewhat remote location. This new CapC compound has relatively high fluorescence emission and singlet oxygen quantum yields attributed to the lack of Through-Bond Interaction between the long alkane chain and the pterin headgroup. The calculated lipophilicity is higher for CapC compared to parent pterin and pterin-6-carboxylic acid (Cap) and comparable to previously reported O- and N-decyl-pterin derivatives. CapC's binding constant Kb (8000 M-1 in L-α-phosphatidylcholine from egg yolk) and ΦF :Φ∆ ratio (0.26:0.40) point to a unique triple function compound, although the hydrolytic stability of CapC is modest due to its ester conjugation. CapC is capable of the general triple action not only as a membrane intercalator, but also fluorophore and 1 O2 sensitizer, leading to a "self-monitoring" membrane fluorescent probe and a membrane photodamaging agent.

Yungang Zhou - One of the best experts on this subject based on the ideXlab platform.

  • tensile strain switched ferromagnetism in layered nbs2 and nbse2
    ACS Nano, 2012
    Co-Authors: Yungang Zhou, Zhiguo Wang, Ping Yang, Xiaotao Zu, Li Yang
    Abstract:

    Developing approaches to effectively induce and control the magnetic states is critical to the use of magnetic nanostructures in quantum information devices but is still challenging. Here we have demonstrated, by employing the density functional theory calculations, the existence of infinite magnetic sheets with structural integrity and magnetic homogeneity. Examination of a series of transition metal dichalcogenides shows that the biaxial tensile strained NbS2 and NbSe2 structures can be magnetized with a ferromagnetic character due to the competitive effects of Through-Bond Interaction and through-space Interaction. The estimated Curie temperatures (387 and 542 K under the 10% strain for NbS2 and NbSe2 structures, respectively) suggest that the unique ferromagnetic character can be achieved above room temperature. The self-exchange of population between 4d orbitals of the Nb atom that leads to exchange splitting is the mechanism behind the transition of the spin moment. The induced magnetic moments can ...

  • tensile strain switched ferromagnetism in layered nbs2 and nbse2
    ACS Nano, 2012
    Co-Authors: Yungang Zhou, Zhiguo Wang, Ping Yang, Li Yang, Xin Sun, Fei Gao
    Abstract:

    Developing approaches to effectively induce and control the magnetic states is critical to the use of magnetic nanostructures in quantum information devices but is still challenging. Here we have demonstrated, by employing the density functional theory calculations, the existence of infinite magnetic sheets with structural integrity and magnetic homogeneity. Examination of a series of transition metal dichalcogenides shows that the biaxial tensile strained NbS(2) and NbSe(2) structures can be magnetized with a ferromagnetic character due to the competitive effects of Through-Bond Interaction and through-space Interaction. The estimated Curie temperatures (387 and 542 K under the 10% strain for NbS(2) and NbSe(2) structures, respectively) suggest that the unique ferromagnetic character can be achieved above room temperature. The self-exchange of population between 4d orbitals of the Nb atom that leads to exchange splitting is the mechanism behind the transition of the spin moment. The induced magnetic moments can be significantly enhanced by the tensile strain, even giving rise to a half-metallic character with a strong spin polarization around the Fermi level. Given the recent progress in achieving the desired strain on two-dimensional nanostructures, such as graphene and a BN layer, in a controlled way, we believe that our calculated results are suitable for experimental verification and implementation, opening a new path to explore the spintronics in pristine two-dimensional nanostructures.

María Noel Urrutia - One of the best experts on this subject based on the ideXlab platform.

  • alkane chain extended pterin through a pendent carboxylic acid acts as triple functioning fluorophore 1o2 sensitizer and membrane binder
    Photochemistry and Photobiology, 2019
    Co-Authors: Niluksha Walalawela, María Noel Urrutia, Andrés H. Thomas, Alexander Greer, Mariana Vignoni
    Abstract:

    In order to develop a new long alkane chain pterin that leaves the pterin core largely unperturbed, we synthesized and photochemically characterized decyl pterin-6-carboxyl ester (CapC) that preserves the pterin amide group. CapC contains a decyl-chain at the carboxylic acid position and a condensed DMF molecule at the N2 position. Occupation of the long alkane chain on the pendent carboxylic acid group retains the acid-base equilibrium of the pterin headgroup due to its somewhat remote location. This new CapC compound has relatively high fluorescence emission and singlet oxygen quantum yields attributed to the lack of Through-Bond Interaction between the long alkane chain and the pterin headgroup. The calculated lipophilicity is higher for CapC compared to parent pterin and pterin-6-carboxylic acid (Cap) and comparable to previously reported O- and N-decyl-pterin derivatives. CapC's binding constant Kb (8000 M-1 in L-α-phosphatidylcholine from egg yolk) and ΦF :Φ∆ ratio (0.26:0.40) point to a unique triple function compound, although the hydrolytic stability of CapC is modest due to its ester conjugation. CapC is capable of the general triple action not only as a membrane intercalator, but also fluorophore and 1 O2 sensitizer, leading to a "self-monitoring" membrane fluorescent probe and a membrane photodamaging agent.