Torrent

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 360 Experts worldwide ranked by ideXlab platform

Jesus V Jorrinnovo - One of the best experts on this subject based on the ideXlab platform.

  • ion Torrent and lllumina two complementary rna seq platforms for constructing the holm oak quercus ilex transcriptome
    PLOS ONE, 2019
    Co-Authors: Victor M Guerrerosanchez, Andrea Verardi, Ana M Maldonadoalconada, Francisco Amilruiz, Jesus V Jorrinnovo
    Abstract:

    Transcriptome analysis is widely used in plant biology research to explore gene expression across a large variety of biological contexts such as those related to environmental stress and plant-pathogen interaction. Currently, next generation sequencing platforms are used to obtain a high amount of raw data to build the transcriptome of any plant. Here, we compare Illumina and Ion Torrent sequencing platforms for the construction and analysis of the holm oak (Quercus ilex) transcriptome. Genomic analysis of this forest tree species is a major challenge considering its recalcitrant character and the absence of previous molecular studies. In this study, Quercus ilex raw sequencing reads were obtained from Illumina and Ion Torrent and assembled by three different algorithms, MIRA, RAY and TRINITY. A hybrid transcriptome combining both sequencing technologies was also obtained in this study. The RAY-hybrid assembly generated the most complete transcriptome (1,116 complete sequences of which 1,085 were single copy) with a E90N50 of 1,122 bp. The MIRA-Illumina and TRINITY-Ion Torrent assemblies annotated the highest number of total transcripts (62,628 and 74,058 respectively). MIRA-Ion Torrent showed the highest number of shared sequences (84.8%) with the oak transcriptome. All the assembled transcripts from the hybrid transcriptome were annotated with gene ontology grouping them in terms of biological processes, molecular functions and cellular components. In addition, an in silico proteomic analysis was carried out using the translated assemblies as databases. Those from Ion Torrent showed more proteins compared to the Illumina and hybrid assemblies. This new generated transcriptome represents a valuable tool to conduct differential gene expression studies in response to biotic and abiotic stresses and to assist and validate the ongoing Q. ilex whole genome sequencing.

Victor M Guerrerosanchez - One of the best experts on this subject based on the ideXlab platform.

  • ion Torrent and lllumina two complementary rna seq platforms for constructing the holm oak quercus ilex transcriptome
    PLOS ONE, 2019
    Co-Authors: Victor M Guerrerosanchez, Andrea Verardi, Ana M Maldonadoalconada, Francisco Amilruiz, Jesus V Jorrinnovo
    Abstract:

    Transcriptome analysis is widely used in plant biology research to explore gene expression across a large variety of biological contexts such as those related to environmental stress and plant-pathogen interaction. Currently, next generation sequencing platforms are used to obtain a high amount of raw data to build the transcriptome of any plant. Here, we compare Illumina and Ion Torrent sequencing platforms for the construction and analysis of the holm oak (Quercus ilex) transcriptome. Genomic analysis of this forest tree species is a major challenge considering its recalcitrant character and the absence of previous molecular studies. In this study, Quercus ilex raw sequencing reads were obtained from Illumina and Ion Torrent and assembled by three different algorithms, MIRA, RAY and TRINITY. A hybrid transcriptome combining both sequencing technologies was also obtained in this study. The RAY-hybrid assembly generated the most complete transcriptome (1,116 complete sequences of which 1,085 were single copy) with a E90N50 of 1,122 bp. The MIRA-Illumina and TRINITY-Ion Torrent assemblies annotated the highest number of total transcripts (62,628 and 74,058 respectively). MIRA-Ion Torrent showed the highest number of shared sequences (84.8%) with the oak transcriptome. All the assembled transcripts from the hybrid transcriptome were annotated with gene ontology grouping them in terms of biological processes, molecular functions and cellular components. In addition, an in silico proteomic analysis was carried out using the translated assemblies as databases. Those from Ion Torrent showed more proteins compared to the Illumina and hybrid assemblies. This new generated transcriptome represents a valuable tool to conduct differential gene expression studies in response to biotic and abiotic stresses and to assist and validate the ongoing Q. ilex whole genome sequencing.

Andrea Verardi - One of the best experts on this subject based on the ideXlab platform.

  • ion Torrent and lllumina two complementary rna seq platforms for constructing the holm oak quercus ilex transcriptome
    PLOS ONE, 2019
    Co-Authors: Victor M Guerrerosanchez, Andrea Verardi, Ana M Maldonadoalconada, Francisco Amilruiz, Jesus V Jorrinnovo
    Abstract:

    Transcriptome analysis is widely used in plant biology research to explore gene expression across a large variety of biological contexts such as those related to environmental stress and plant-pathogen interaction. Currently, next generation sequencing platforms are used to obtain a high amount of raw data to build the transcriptome of any plant. Here, we compare Illumina and Ion Torrent sequencing platforms for the construction and analysis of the holm oak (Quercus ilex) transcriptome. Genomic analysis of this forest tree species is a major challenge considering its recalcitrant character and the absence of previous molecular studies. In this study, Quercus ilex raw sequencing reads were obtained from Illumina and Ion Torrent and assembled by three different algorithms, MIRA, RAY and TRINITY. A hybrid transcriptome combining both sequencing technologies was also obtained in this study. The RAY-hybrid assembly generated the most complete transcriptome (1,116 complete sequences of which 1,085 were single copy) with a E90N50 of 1,122 bp. The MIRA-Illumina and TRINITY-Ion Torrent assemblies annotated the highest number of total transcripts (62,628 and 74,058 respectively). MIRA-Ion Torrent showed the highest number of shared sequences (84.8%) with the oak transcriptome. All the assembled transcripts from the hybrid transcriptome were annotated with gene ontology grouping them in terms of biological processes, molecular functions and cellular components. In addition, an in silico proteomic analysis was carried out using the translated assemblies as databases. Those from Ion Torrent showed more proteins compared to the Illumina and hybrid assemblies. This new generated transcriptome represents a valuable tool to conduct differential gene expression studies in response to biotic and abiotic stresses and to assist and validate the ongoing Q. ilex whole genome sequencing.

  • Ion Torrent and lllumina, two complementary RNA-seq platforms for constructing the holm oak (Quercus ilex) transcriptome - Fig 1
    2019
    Co-Authors: Victor M. Guerrero-sanchez, Ana M. Maldonado-alconada, Francisco Amil-ruiz, Andrea Verardi, Jesús V. Jorrín-novo, María-dolores Rey
    Abstract:

    Alignment between Q. robur and Q. petrea transcriptomes (oak transcriptome) and Q. ilex (holm oak) transcriptome using MIRA, RAY, TRINITY and RAY hybrid assemblies from Illumina (a) and Ion Torrent (b) reads. Distribution of percent sequence identity between oak and Q. ilex (MIRA, RAY, TRINITY, RAY hybrids) transcriptomes (c).

Dandan Zhang - One of the best experts on this subject based on the ideXlab platform.

  • pik3ca and tp53 gene mutations in human breast cancer tumors frequently detected by ion Torrent dna sequencing
    PLOS ONE, 2014
    Co-Authors: Xusheng Bai, Chuanning Tang, Vijayalakshmi Nandakumar, Feng Lou, Enke Zhang, Zhuo Wang, Lihong Chen, Wei Zhang, Wei Han, Dandan Zhang
    Abstract:

    Breast cancer is the most common malignancy and the leading cause of cancer deaths in women worldwide. While specific genetic mutations have been linked to 5–10% of breast cancer cases, other environmental and epigenetic factors influence the development and progression of the cancer. Since unique mutations patterns have been observed in individual cancer samples, identification and characterization of the distinctive breast cancer molecular profile is needed to develop more effective target therapies. Until recently, identifying genetic cancer mutations via personalized DNA sequencing was impractical and expensive. The recent technological advancements in next-generation DNA sequencing, such as the semiconductor-based Ion Torrent sequencing platform, has made DNA sequencing cost and time effective with more reliable results. Using the Ion Torrent Ampliseq Cancer Panel, we sequenced 737 loci from 45 cancer-related genes to identify genetic mutations in 105 human breast cancer samples. The sequencing analysis revealed missense mutations in PIK3CA, and TP53 genes in the breast cancer samples of various histologic types. Thus, this study demonstrates the necessity of sequencing individual human cancers in order to develop personalized drugs or combination therapies to effectively target individual, breast cancer-specific mutations.

  • frequent mutations in egfr kras and tp53 genes in human lung cancer tumors detected by ion Torrent dna sequencing
    PLOS ONE, 2014
    Co-Authors: Xin Cai, Jianhui Sheng, Chuanning Tang, Vijayalakshmi Nandakumar, Haiying Tang, Yu Qin, Hongwei Guan, Feng Lou, Dandan Zhang, Hong Sun
    Abstract:

    Lung cancer is the most common malignancy and the leading cause of cancer deaths worldwide. While smoking is by far the leading cause of lung cancer, other environmental and genetic factors influence the development and progression of the cancer. Since unique mutations patterns have been observed in individual cancer samples, identification and characterization of the distinctive lung cancer molecular profile is essential for developing more effective, tailored therapies. Until recently, personalized DNA sequencing to identify genetic mutations in cancer was impractical and expensive. The recent technological advancements in next-generation DNA sequencing, such as the semiconductor-based Ion Torrent sequencing platform, has made DNA sequencing cost and time effective with more reliable results. Using the Ion Torrent Ampliseq Cancer Panel, we sequenced 737 loci from 45 cancer-related genes to identify genetic mutations in 76 human lung cancer samples. The sequencing analysis revealed missense mutations in KRAS, EGFR, and TP53 genes in the breast cancer samples of various histologic types. Thus, this study demonstrates the necessity of sequencing individual human cancers in order to develop personalized drugs or combination therapies to effectively target individual, breast cancer-specific mutations.

Ana M Maldonadoalconada - One of the best experts on this subject based on the ideXlab platform.

  • ion Torrent and lllumina two complementary rna seq platforms for constructing the holm oak quercus ilex transcriptome
    PLOS ONE, 2019
    Co-Authors: Victor M Guerrerosanchez, Andrea Verardi, Ana M Maldonadoalconada, Francisco Amilruiz, Jesus V Jorrinnovo
    Abstract:

    Transcriptome analysis is widely used in plant biology research to explore gene expression across a large variety of biological contexts such as those related to environmental stress and plant-pathogen interaction. Currently, next generation sequencing platforms are used to obtain a high amount of raw data to build the transcriptome of any plant. Here, we compare Illumina and Ion Torrent sequencing platforms for the construction and analysis of the holm oak (Quercus ilex) transcriptome. Genomic analysis of this forest tree species is a major challenge considering its recalcitrant character and the absence of previous molecular studies. In this study, Quercus ilex raw sequencing reads were obtained from Illumina and Ion Torrent and assembled by three different algorithms, MIRA, RAY and TRINITY. A hybrid transcriptome combining both sequencing technologies was also obtained in this study. The RAY-hybrid assembly generated the most complete transcriptome (1,116 complete sequences of which 1,085 were single copy) with a E90N50 of 1,122 bp. The MIRA-Illumina and TRINITY-Ion Torrent assemblies annotated the highest number of total transcripts (62,628 and 74,058 respectively). MIRA-Ion Torrent showed the highest number of shared sequences (84.8%) with the oak transcriptome. All the assembled transcripts from the hybrid transcriptome were annotated with gene ontology grouping them in terms of biological processes, molecular functions and cellular components. In addition, an in silico proteomic analysis was carried out using the translated assemblies as databases. Those from Ion Torrent showed more proteins compared to the Illumina and hybrid assemblies. This new generated transcriptome represents a valuable tool to conduct differential gene expression studies in response to biotic and abiotic stresses and to assist and validate the ongoing Q. ilex whole genome sequencing.